Annals of Operations Research

, Volume 255, Issue 1–2, pp 465–506 | Cite as

Mitigating global warming: a real options approach

  • Marc Chesney
  • Pierre LasserreEmail author
  • Bruno Troja
S.I.: Energy and Climate Policy Modeling


Mitigation and adaptation represent two solutions to the issue of global warming. While mitigation aims at reducing \(\hbox {CO}_2\) emissions and preventing climate change, adaptation encompasses a broad scope of techniques used to reduce the impacts of climate change once they have occurred. Both have direct costs on a country’s gross domestic product, but costs also arise from temperature increases due to inaction. This paper introduces a tipping point in a real options model and analyzes optimal investment choices in mitigation and their timing.


Adaptation Mitigation Real options Delay Tipping point Climate change \(\hbox {CO}_2\) Gross domestic product 



The authors’ deepest gratitude goes to Dr. Delia Coculescu, Department of Banking and Finance, University of Zürich, for the helpful suggestions. The authors would also like to thank two anonymous referees for their insightful comments and editorial advices.


  1. Amigues, J. P., & Moreaux, M. (2013). The atmospheric carbon resilience problem: A theoretical analysis. Resource and Energy Economics, 35(4), 618–636. (Special section—Essays on resource economics in honor of Gerard Gaudet).CrossRefGoogle Scholar
  2. Archer, D., Eby, M., Brovkin, V., Ridgwell, A., Cao, L., Mikolajewicz, U., et al. (2009). Atmospheric lifetime of fossil fuel carbon dioxide. Annual Review of Earth and Planetary Sciences, 37, 117–134.CrossRefGoogle Scholar
  3. Arrow, K. J., & Fisher, A. C. (1974). Environmental preservation, uncertainty, and irreversibility. The Quarterly Journal of Economics, 88(2), 312–319.CrossRefGoogle Scholar
  4. Bahn, O., Chesney, M., & Gheyssens, J. (2012). The effect of proactive adaptation on green investment. Environmental Science & Policy, 18, 9–24.CrossRefGoogle Scholar
  5. Bahn, O., Edwards, N. R., Knutti, R., & Stocker, T. F. (2011). Energy policies avoiding a tipping point in the climate system. Energy Policy, 39(1), 334–348.CrossRefGoogle Scholar
  6. Baranzini, A., Chesney, M., & Morisset, J. (2003). The impact of possible climate catastrophes on global warming policy. Energy Policy, 31(8), 691–701.CrossRefGoogle Scholar
  7. Barrett, S. (2005). Environment and statecraft: The strategy of environmental treaty-making. Oxford: Oxford University Press.CrossRefGoogle Scholar
  8. Barrett, S. (2013). Climate treaties and approaching catastrophes. Journal of Environmental Economics and Management, 66(2), 235–250.CrossRefGoogle Scholar
  9. Battaglini, M., Nunnari, S., & Palfrey, T. R. (2014). Dynamic free riding with irreversible investments. American Economic Review, 104(9), 2858–2871.CrossRefGoogle Scholar
  10. Bretschger, L., & Vinogradova, A. (2014). Growth and mitigation policies with uncertain climate damage. CEEES Paper Series CE3S-02/14, European University at St. Petersburg, Department of Economics.Google Scholar
  11. Brock, W. A., & Mirman, L. J. (1972). Optimal economic growth and uncertainty: The discounted case. Journal of Economic Theory, 4(3), 479–513.CrossRefGoogle Scholar
  12. Brozović, N., & Schlenker, W. (2011). Optimal management of an ecosystem with an unknown threshold. Ecological Economics, 70(4), 627–640.CrossRefGoogle Scholar
  13. Carr, P., Jarrow, R., & Myneni, R. (1992). Alternative characterizations of American put options. Mathematical Finance, 2(2), 87–106.CrossRefGoogle Scholar
  14. Central Intelligence Agency. (2012). The World Factbook.Google Scholar
  15. Chen, Y. F., Funke M., & Glanemann, N. (2011). Dark clouds or silver linings? Knightian uncertainty and climate change. Dundee Discussion Papers in Economics 258, Economic Studies, University of Dundee.Google Scholar
  16. Chesney, M., & Gauthier, L. (2006). American Parisian options. Finance and Stochastics, 10, 475–506.CrossRefGoogle Scholar
  17. Chesney, M., & Jeanblanc, M. (2004). Pricing American currency options in an exponential Lévy model. Applied Mathematical Finance, 11(3), 207–225.CrossRefGoogle Scholar
  18. Chesney, M., Jeanblanc, M., & Yor, M. (1997). Brownian excursions and Parisian barrier options. Advances in Applied Probability, 29(1), 165–184.CrossRefGoogle Scholar
  19. Dakos, V., Scheffer, M., van Nes, E. H., Brovkin, V., Petoukhov, V., & Held, H. (2008). Slowing down as an early warning signal for abrupt climate change. Proceedings of the National Academy of Sciences, 105(38), 14308–14312.CrossRefGoogle Scholar
  20. de Bruin, K. C., & Dellink, R. B. (2011). How harmful are restrictions on adapting to climate change? Global Environmental Change, 21(1), 34–45.CrossRefGoogle Scholar
  21. Dixit, A. K., & Pindyck, R. S. (1994). Investment under uncertainty. Princeton, NJ: Princeton University Press.Google Scholar
  22. Eby, M., Weaver, A. J., Alexander, K., Zickfeld, K., Abe-Ouchi, A., Cimatoribus, A. A., et al. (2012). Historical and idealized climate model experiments: An emic intercomparison. Climate of the Past Discussions, 8(4), 4121–4181.CrossRefGoogle Scholar
  23. Eby, M., Zickfeld, K., Montenegro, A., Archer, D., Meissner, K. J., & Weaver, A. J. (2009). Lifetime of anthropogenic climate change: Millennial time scales of potential CO\(_2\) and surface temperature perturbations. Journal of Climate, 22(10), 2501–2511.Google Scholar
  24. Fankhauser, S. (1997). Valuing climate change: The economics of the greenhouse. London: Earthscan.Google Scholar
  25. Fischer, G., Shah, M., Tubiello, F. N., & van Velhuizen, H. (2005). Socio-economic and climate change impacts on agriculture: An integrated assessment, 1990–2080. Philosophical Transactions of the Royal Society B: Biological Sciences, 360(1463), 2067–2083.CrossRefGoogle Scholar
  26. Fisher, A. C., & Krutilla, J. V. (1975). Resource conservation, environmental preservation, and the rate of discount. The Quarterly Journal of Economics, 89(3), 358–370.CrossRefGoogle Scholar
  27. Friedlingstein, P., Solomon, S., Plattner, G.-K., Knutti, R., Ciais, P., & Raupach, M. R. (2011). Long-term climate implications of twenty-first century options for carbon dioxide emission mitigation. Nature Climate Change, 1(9), 457–461.CrossRefGoogle Scholar
  28. Fundacion DARA Internacional and Climate Vulnerable Forum. (2012). Climate vulnerability monitor (2nd ed.). Madrid: Fundacion DARA Internacional.
  29. Golosov, M., Hassler, J., Krusell, P., & Tsyvinski, A. (2014). Optimal taxes on fossil fuel in general equilibrium. Econometrica, 82(1), 41–88.CrossRefGoogle Scholar
  30. Hansen, J., Ruedy, R., Sato, M., & Lo, K. (2010). Global surface temperature change. Reviews of Geophysics, 48(4).Google Scholar
  31. Hansen, J., Sato, M., Kharecha, P., Beerling, D., Berner, R., Masson-Delmotte, V., et al. (2008). Target atmospheric CO\(_2\): Where should humanity aim? The Open Atmospheric Science Journal, 2, 217–231.Google Scholar
  32. Hasselmann, K. (1976). Stochastic climate models part I. Theory. Tellus, 28(6), 473–485.CrossRefGoogle Scholar
  33. Henry, C. (1974). Option values in the economics of irreplaceable assets. The Review of Economic Studies, 41(5), 89–104.CrossRefGoogle Scholar
  34. Huber, M., & Knutti, R. (2012). Anthropogenic and natural warming inferred from changes in earth/’s energy balance. Nature Geoscience, 5(1), 31–36.CrossRefGoogle Scholar
  35. IEA. (2006). World energy outlook 2006. OECD/IEA.Google Scholar
  36. Insley, M. (2002). A real options approach to the valuation of a forestry investment. Journal of Environmental Economics and Management, 44(1), 471–492.CrossRefGoogle Scholar
  37. IPCC. (2013). IPCC fifth assessment report: Climate change 2013. Intergovernmental Panel on Climate Change: Technical report.Google Scholar
  38. IPCC. (2014). IPCC fifth assessment report: Climate change 2014. Intergovernmental Panel on Climate Change: Technical report.Google Scholar
  39. Kaerner, O. (1996). Global temperature deviations as a random walk. Journal of Climate, 9(3), 656–658.CrossRefGoogle Scholar
  40. Kassar, I., & Lasserre, P. (2004). Species preservation and biodiversity value: A real options approach. Journal of Environmental Economics and Management, 48(2), 857–879.CrossRefGoogle Scholar
  41. Keller, K., Bolker, B. M., & Bradford, D. F. (2004). Uncertain climate thresholds and optimal economic growth. Journal of Environmental Economics and Management, 48(1), 723–741.CrossRefGoogle Scholar
  42. Lawrence, J. K., & Ruzmaikin, A. A. (1998). Transient solar influence on terrestrial temperature fluctuations. Geophysical Research Letters, 25(2), 159–162.CrossRefGoogle Scholar
  43. Lemoine, D., & Traeger, C. (2014). Watch your step: Optimal policy in a tipping climate. American Economic Journal: Economic Policy, 6(1), 137–166.Google Scholar
  44. Lenton, T. M., Held, H., Kriegler, E., Hall, J. W., Lucht, W., Rahmstorf, S., et al. (2008). Tipping elements in the earth’s climate system. Proceedings of the National Academy of Sciences, 105(6), 1786–1793.CrossRefGoogle Scholar
  45. Merton, R. C. (1973). Theory of rational option pricing. Bell Journal of Economics, 4(1), 141–183.CrossRefGoogle Scholar
  46. Naevdal, E. (2006). Dynamic optimisation in the presence of threshold effects when the location of the threshold is uncertain—with an application to a possible disintegration of the Western Antarctic Ice Sheet. Journal of Economic Dynamics and Control, 30(7), 1131–1158.CrossRefGoogle Scholar
  47. Naevdal, E., & Oppenheimer, M. (2007). The economics of the thermohaline circulation—a problem with multiple thresholds of unknown locations. Resource and Energy Economics, 29(4), 262–283.CrossRefGoogle Scholar
  48. Nakićenović, N., & IPCC, Working Group III. (2000). Special report on emissions scenarios: A special report of Working Group III of the intergovernmental panel on climate change. Cambridge University Press.Google Scholar
  49. Nordhaus, W., & Boyer, J. (2003). Warming the world: Economic models of global warming. Cambridge: MIT Press.Google Scholar
  50. Nordhaus, W. D. (1992). The ’DICE’ model: Background and structure of a dynamic integrated climate-economy model of the economics of global warming. Cowles Foundation Discussion Papers 1009, Cowles Foundation for Research in Economics, Yale University.Google Scholar
  51. Parry, M., Arnell, N., Berry, P., Dodman, D., Fankhauser, S., Hope, C., et al. (2009). Assessing the cost of adaptation to climate change: A review of the UNFCCC and other recent estimates. London: and Development and Grantham Institute for Climate Change, International Institute for Environment.Google Scholar
  52. Parry, M., Rosenzweig, C., Iglesias, A., Livermore, M., & Fischer, G. (2004). Effects of climate change on global food production under SRES emissions and socio-economic scenarios. Global Environmental Change, 14(1), 53–67.CrossRefGoogle Scholar
  53. Peskir, G., & Shiryaev, A. (2006). Optimal stopping and free-boundary problems. Birkhäuser Basel: Lectures in Mathematics. ETH Zürich.Google Scholar
  54. Pindyck, R. S. (2000). Irreversibilities and the timing of environmental policy. Resource and Energy Economics, 22(3), 233–259.CrossRefGoogle Scholar
  55. Pindyck, R. S. (2015). The use and misuse of models for climate policy. Working Paper 21097, National Bureau of Economic Research.Google Scholar
  56. Prieur, F., Tidball, M., & Withagen, C. A. (2011). Optimal emission-extraction policy in a world of scarcity and irreversibility. CESifo Working Paper Series 3512, CESifo Group Munich.Google Scholar
  57. Rosenzweig, C., & Parry, M. (1994). Potential impact of climate change on world food supply. Nature, 367, 133–138.CrossRefGoogle Scholar
  58. Stavins, R. N. (2011). The problem of the commons: Still unsettled after 100 years. American Economic Review, 101(1), 81–108.CrossRefGoogle Scholar
  59. Stern, N. (2007). The economics of climate change: The Stern review. Cambridge: Cambridge University Press.CrossRefGoogle Scholar
  60. The World Bank. (2012). World Development Indicators. Technical report.
  61. Tol, R. S. (2002a). Estimates of the damage costs of climate change, part I: Benchmark estimates. Environmental and Resource Economics, 21, 47–73.CrossRefGoogle Scholar
  62. Tol, R. S. (2002b). Estimates of the damage costs of climate change, part II: Dynamic estimates. Environmental and Resource Economics, 21, 135–160.CrossRefGoogle Scholar
  63. Tsur, Y., & Zemel, A. (2008). Regulating environmental threats. Environmental and Resource Economics, 39(3), 297–310.CrossRefGoogle Scholar
  64. Weitzman, M. L. (2007). The role of uncertainty in the economics of catastrophic climate change. AEI-Brookings Joint Center for Regulatory Studies Working Paper.Google Scholar
  65. Weyant, J. P. (2008). A critique of the Stern review’s mitigation cost analyses and integrated assessment. Review of Environmental Economics and Policy, 2(1), 77–93.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  1. 1.University of Zurich, IBFZurichSwitzerland
  2. 2.Départment des sciences économiquesUniversité du Québec à Montréal, ESGMontrealCanada

Personalised recommendations