Skip to main content
Log in

Big Data and supply chain management: a review and bibliometric analysis

  • Big Data Analytics in Operations & Supply Chain Management
  • Published:
Annals of Operations Research Aims and scope Submit manuscript

Abstract

As Big Data has undergone a transition from being an emerging topic to a growing research area, it has become necessary to classify the different types of research and examine the general trends of this research area. This should allow the potential research areas that for future investigation to be identified. This paper reviews the literature on ‘Big Data and supply chain management (SCM)’, dating back to 2006 and provides a thorough insight into the field by using the techniques of bibliometric and network analyses. We evaluate 286 articles published in the past 10 years and identify the top contributing authors, countries and key research topics. Furthermore, we obtain and compare the most influential works based on citations and PageRank. Finally, we identify and propose six research clusters in which scholars could be encouraged to expand Big Data research in SCM. We contribute to the literature on Big Data by discussing the challenges of current research, but more importantly, by identifying and proposing these six research clusters and future research directions. Finally, we offer to managers different schools of thought to enable them to harness the benefits from using Big Data and analytics for SCM in their everyday work.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Acker, O., Gröne, F., Blockus, A., & Bange, C. (2011). In-memory analytics–Strategies for real-time CRM. Journal of Database Marketing & Customer Strategy Management, 18(2), 129–136.

    Google Scholar 

  • Anderson, C. (2008). The end of theory, will the data deluge makes the scientific method obsolete? Edge. http://www.edge.org/3rd_culture/anderson08/anderson08_index.html (25 July 2011).

  • Barton, D., & Court, D. (2012). Making advanced analytics work for you. Harvard Business Review, 90(10), 78–83, 128.

  • Batagelj, V., & Mrvar, A. (2011). Pajek: Program for analysis and visualization of large networks–Reference manual. Slovenia: University of Ljubljana.

    Google Scholar 

  • Bengio, Y. (2009). Learning deep architectures for AI. Foundations and Trends in Machine Learning, 2(1), 1–127.

    Google Scholar 

  • Bi, Z., & Cochran, D. (2014). Big Data analytics with applications. Journal of Management Analytics, 1(4), 249–265.

    Google Scholar 

  • Blondel, V. D., Guillaume, J. L., Lambiotte, R., & Lefebvre, E. (2008). Fast unfolding of communities in large networks. Journal of Statistical Mechanics: Theory and Experiment. doi:10.1088/1742-5468/2008/10/P10008.

    Google Scholar 

  • Bollen, J., Mao, H., & Zeng, X. (2011). Twitter mood predicts the stock market. Journal of Computational Science, 2(1), 1–8.

    Google Scholar 

  • Boyd, D. (2010). Social network sites as networked publics: Affordances, dynamics, and implications. In Z. Papacharissi (Ed.), A networked self: Identity, community and culture on social network sites (pp. 39–58). New York: Routledge.

    Google Scholar 

  • Boyd, D., & Crawford, K. (2012). Critical questions for Big Data. Information, Communication and Society, 15(5), 662–679.

    Google Scholar 

  • Bozarth, C., Handfield, R., & Das, A. (1998). Stages of global sourcing strategy evolution: an exploratory study. Journal of Operations Management, 16(2–3), 241–255.

    Google Scholar 

  • Brin, S., & Page, L. (1998). The anatomy of a large-scale hyper textual web search engine. Computer Networks and ISDN Systems, 30(1–7), 107–117.

    Google Scholar 

  • Brown, B., Chul, M., & Manyika, J. (2011). Are you ready for the era of Big Data? McKinsey Quarterly, 4(24–27), 30–35.

    Google Scholar 

  • Casemore, S. (2012). Social media and the coming supply-chain revolution. http://www3.cfo.com/article/2012/2/supply-chain_supply-chain-innovation-social-media-casemore-ghg.

  • Cecere, L. (2012). Big Data: Go big or go home? Supply Chain Insights LLC http://supplychaininsights.com/wpcontent/uploads/2012/07/Big_Data_Report_16_JULY_2012.pdf. Accessed 05 Nov 13.

  • Chae, B. K. (2015). Insights from hashtag# supplychain and Twitter Analytics: Considering Twitter and Twitter data for supply chain practice and research. International Journal of Production Economics, 165, 247–259.

    Google Scholar 

  • Chae, B., & Olson, D. (2013). Business analytics for supply chain: A dynamic-capabilities framework. International Journal of Information Technology & Decision Making, 12(9), 9–26.

    Google Scholar 

  • Chae, B., Olson, D., & Sheu, C. (2014). The impact of supply chain analytics on operational performance: A resource based view. International Journal of Production Research, 52, 4695–4710.

    Google Scholar 

  • Chen, C., Ibekwe-SanJuan, F., & Hou, J. (2010). The structure and dynamics of co-citation clusters: A multiple-perspective co-citation analysis. Journal of the American Society for Information Science, 61(7), 1386–1409.

    Google Scholar 

  • Chen, H., Chiang, R. H. L., & Storey, V. C. (2012). Business intelligence and analytics: From Big Data to big impact. MIS Quarterly, 36(4), 1165–1188.

    Google Scholar 

  • Chen, P., Xie, H., Maslov, S., & Redner, S. (2007). Finding scientific gems with Google’s PageRank algorithm. Journal of Informetrics, 1, 8–15.

    Google Scholar 

  • Chiu, C. M., Hsu, M. H., & Wang, E. T. G. (2006). Understanding knowledge sharing in virtual communities: An integration of social capital and social cognitive theories. Decision Support Systems, 42(3), 1872–1888.

    Google Scholar 

  • Clauset, A., Newman, M. E. J., & Moore, C. (2004). Finding community structure in very large networks. Physical Review E, 70(6), 1–6.

    Google Scholar 

  • Cohen, J., Dolan, B., Dunlap, M., Hellerstein, J. M., & Welton, C. (2009). MAD skills: New analysis practices for Big Data. Proceedings of the VLDB Endowment, 2(2), 1481–1492.

    Google Scholar 

  • Craighead, C. W., Hult, G. T. M., & Ketchen, D. J, Jr. (2009). The effects of innovation-cost strategy, knowledge, and action in the supply chain on firm performance. Journal of Operations Management, 27(5), 405–421.

    Google Scholar 

  • Cukier, K. (2010). The economist, data, data everywhere: A special report on managing information. Retrieved from http://www.economist.com/node/15557443, February 25.

  • Culnan, M. (1986). The intellectual development of management information systems. Management Science, 32(2), 156–172.

    Google Scholar 

  • Davenport, T. H. (2006). Competing on analytics. Harvard Business Review, 84(1), 84–93.

    Google Scholar 

  • Davenport, T. H., & Harris, J. G. (2007). Competing on analytics: The new science of winning. Cambridge: Harvard Business School Press.

    Google Scholar 

  • Davenport, T. H., & Patil, D. J. (2012). Data scientist: The sexiest job of the 21st century. Harvard Business Review, 90(10), 70–76.

    Google Scholar 

  • Dean, J., & Ghemawat, S. (2004). MapReduce: Simplified data processing on large clusters, in: Proc. 6th USENIX symposium on operating systems design and implementation, OSDI 2004, San Francisco, USA, December.

  • Demirkan, H., & Delen, D. (2013). Leveraging the capabilities of service-oriented decision support systems: Putting analytics and big data in cloud. Decision Support Systems, 55(1), 412–421.

    Google Scholar 

  • Diebold, F. X. (2012). A personal perspective on the origin(s) and development of “Big Data”: The phenomenon, the term, and the discipline. Scholarly Paper No. ID 2202843, Social Science Research Network. Retrieved from http://papers.ssrn.com/sol3/papers.cfm?abstractid=2202843.

  • Ding, Y., & Cronin, B. (2011). Popular and/or prestigious? Measures of scholarly esteem. Information Processing Management, 47(1), 80–96.

    Google Scholar 

  • Ding, Y., Yan, E., Frazho, A., & Caverlee, J. (2009). PageRank for ranking authors in co-citation networks. Journal of the American Society for Information Science and Technology, 60(11), 2229–2243.

    Google Scholar 

  • Domingos, P., & Richardson, M. (2001). Mining the network value of customers. Proceedings of the 7th International Conference on Knowledge Discovery and Data Mining (pp. 57–66). New York: ACM.

  • Dubey, R., Gunasekaran, A., Childe, S. J., Wamba, S. F., & Papadopoulos, T. (2016). The impact of Big Data on world-class sustainable manufacturing. The International Journal of Advanced Manufacturing Technology, 84(1), 631–645.

    Google Scholar 

  • Elberse, A. (2008). Should you invest in the long tail? HBS Centennial Issue Harvard Business Review, 86(7–8), 88–96. (HBS Centennial Issue).

  • Erikson, R. S., & Wlezien, C. (2012). Markets vs. polls as election predictors: An historical assessment. Electoral Studies, 31, 532–539.

    Google Scholar 

  • Fahimnia, B., Sarkis, J., & Davarzani, H. (2015). Green supply chain management: A review and bibliometric analysis. International Journal of Production Economics, 162, 101–114.

    Google Scholar 

  • Fare, R., Grosskopf, S., Lindgren, B., & Roos, P. (1994a). Productivity developments in Swedish hospitals: A Malmquist output index approach. In A. Charnes, W. W. Cooper, A. Y. Lewin, & L. M. Seiford (Eds.), Data envelopment analysis: Theory, methodology and applications (pp. 253–272). Boston: Kluwer Academic Publishers.

    Google Scholar 

  • Feng, Z. Y., Guo, X. H., & Zeng, D. J. (2013). On the research frontiers of business management in the context of Big Data. Journal of Management Sciences in China, 16(1), 1–9.

    Google Scholar 

  • Fildes, R., & Petropoulos, F. (2015). Simple versus complex selection rules for forecasting many time series. Journal of Business Research, 68(8), 1692–1701.

    Google Scholar 

  • Flory, M. M. (2012). The big kahuna. Marketing Research, 24(2), 3.

    Google Scholar 

  • Flyvbjerg, B. (2014). What you should know about megaprojects and why: An overview. Project Management Journal, 45(2), 6–19.

    Google Scholar 

  • Forrester. (2012). The Big Deal about Big Data for customer engagement business: Leaders must lead big data initiatives to derive value. http://www.forrester.com/The+Big+Deal+About+Big+Data+For+Customer+Engagement/fulltext/-/E-RES72241.

  • Gandomi, A., & Haider, M. (2015). Beyond the hype: Big Data concepts, methods, and analytics. International Journal of Information Management, 35(2), 137–144.

    Google Scholar 

  • Gardner, E. S, Jr. (2006). Exponential smoothing: The state of the art-Part II. International Journal of Forecasting, 22, 637–666.

    Google Scholar 

  • Garfield, E. (1972). Citation analysis as a tool in journal evaluation. Science, 178, 471–479.

    Google Scholar 

  • Gephi. (2013). Gephi—Makes graphs handy. https://gephi.org.

  • Gobble, M. M. (2013). Big Data: The next big thing in innovation. Research Technology Management, 56(1), 64–66.

    Google Scholar 

  • Goodwin, P. (2015). When simple alternatives to Bayes formula work well: Reducing the cognitive load when updating probability forecasts. Journal of Business Research, 68(8), 1686–1691.

    Google Scholar 

  • Graefe, A. (2015). Improving forecasts using equally weighted predictors. Journal of Business Research, 68(8), 1792–1799.

    Google Scholar 

  • Graefe, A., Küchenhoff, H., Stierle, V., & Riedl, B. (2015). Limitations of ensemble Bayesian model averaging for forecasting social science problems. International Journal of Forecasting, 31(3), 943–951.

    Google Scholar 

  • Hazen, B. T., Boone, C. A., Ezell, J. D., & Jones-Farmer, L. A. (2014). Data quality for data science, predictive analytics, and Big Data in supply chain management: An introduction to the problem and suggestions for research and applications. International Journal of Production Economics, 154, 72–80.

    Google Scholar 

  • Hjørland, B. (2013). Citation analysis: A social and dynamic approach to knowledge organization. Information Processing Management, 49(6), 1313–1325.

    Google Scholar 

  • Hopkins, M. S., Lavalle, S., & Balboni, F. (2010). The new intelligent enterprise: 10 insights: A first look at the new intelligent enterprise survey. MIT Sloan Management Review, 52(1), 22.

    Google Scholar 

  • Huang, M-Ch., Yen, G.-F., & Liu, T-Ch. (2014). Re-examining supply chain integration and the supplier’s performance relationships under uncertainty. Supply Chain Management: An International Journal, 19(1), 64–78.

    Google Scholar 

  • Hughes, A. L., & Palen, L. (2009). Twitter adoption and use in mass convergence and emergency events. International Journal of Emergency Management, 6, 248–260.

    Google Scholar 

  • Isard, M., Budiu, M., Yu, Y., Birrell, A., & Fetterly, D. (2007). Dryad: distributed data-parallel programs from sequential building blocks. In EuroSys’07 Proceedings of the 2nd ACM SIGOPS/EuroSys European conference on computer systems (Vol. 41(3), pp. 59–72).

  • Ishii, R. P., & de Mello, R. F. (2012). An online data access prediction and optimization approach for distributed systems. IEEE Transactions on Parallel and Distributed System, 23(6), 1017–1029.

    Google Scholar 

  • Jacobs, A. (2009). The pathologies of Big Data. Magazine Queue-Data, 7(6), 10.

    Google Scholar 

  • Jha, A. K., DesRoches, C. M., Kralovec, P. D., & Joshi, M. S. (2010). A progress report on electronic health records in US hospitals. Health Affairs, 29(10), 1951–1957.

    Google Scholar 

  • Kahneman, D., Lovallo, D., & Olivier, O. (2011). Before you make that big decision. Harvard Business Review, 89(6), 50–60.

    Google Scholar 

  • Kempe, D., Kleinberg, J., & Tardos, E. (2003). Maximizing the spread of influence through a social network. KDD ‘03: Proceedings of the ninth ACM SIGKDD international conference on Knowledge discovery and data mining (pp. 137–146). New York, NY: ACM.

  • Kempe, D., Kleinberg, J., & Tardos, E. (2005). Influential nodes in a diffusion model for social networks. In ICALP 2005:Proceedings of the 32nd international colloquium on automata, languages and programming (pp. 1127–1138).

    Google Scholar 

  • KetchenJr, D. J., & Hult, G. T. M. (2007). Bridging organization theory and supply chain management: The case of best value supply chains. Journal of Operations Management, 25(2), 573–580.

    Google Scholar 

  • Khorheh, M. A., Moisiadis, F., & Davarzani, H. (2015). Socio-environmental performance of transportation systems. Management of Environmental Quality: An International Journal, 26(6), 826–851.

    Google Scholar 

  • Kleinberg, J. (2007). Cascading behavior in networks: Algorithmic and economic issues. In N. Nisan, T. Roughgarden, É. Tardos, & V. V. Vazirani (Eds.), Algorithmic Game Theory (pp. 613–632). Cambridge University Press.

  • Laney, D. (2001). 3d Data management: Controlling data volume, velocity and variety. Technical report Application Delivery Strategies Meta Group.

  • Larrick, R. P., & Soll, J. B. (2006). Intuitions about combining opinions: Misappreciation of the averaging principle. Management Science, 52, 111–127.

    Google Scholar 

  • Larsen, P. O., & von Ins, M. (2010). The rate of growth in scientific publication and the decline in coverage provided by science citation index. Scientometrics, 84(3), 575–603.

    Google Scholar 

  • LaValle, S., Lesser, E., Shockley, R., Hopkins, M. S., & Kruschwitz, N. (2011). Big Data: Analytics and the path from insights to value. MIT Sloan Management Review, 52(2), 21–32.

    Google Scholar 

  • Leong, D. (2009). A new revolution in enterprise storage architecture. IEEE Potentials, 28(6), 32–33.

    Google Scholar 

  • Leskovec, J., Kleinberg, J., & Faloutsos, C. (2007). Graph evolution: Densification and shrinking diameters. ACM Transactions on Knowledge Discovery from Data, 1(1), 1–41.

    Google Scholar 

  • Leydesdorff, L. (2011). Bibliometrics/citation networks. In G. A. Barnett (Ed.), Encyclopedia of social networks. Thousand Oaks, CA: SAGE Publications Inc.

    Google Scholar 

  • Lovis, C., Spahni, S., Cassoni-Schoellhammer, N., & Geissbuhler, A. (2006). Comprehensive management of the access to a component-based healthcare information system. Studies in Health Technology and Informatics, 124, 251–256.

    Google Scholar 

  • Lynch, C. (2008). Big Data: How do your data grow? Nature, 455(7209), 28–29.

    Google Scholar 

  • MacRoberts, M. H., & MacRoberts, B. R. (1989). Problems of citation analysis: A critical review. Journal of the American Society for Information Science, 40(5), 342–349.

    Google Scholar 

  • MacRoberts, M. H., & MacRoberts, B. R. (2010). Problems of citation analysis: A study of uncited and seldom-sited influences. Journal of the American Society for Information Science and Technology, 61(1), 1–12.

    Google Scholar 

  • Makridakis, S., & Hibon, M. (2000). The M-3 competition: Results, conclusions and implications. International Journal of Forecasting, 16, 451–476.

    Google Scholar 

  • Manyika, J., Chui, M., Brown, B., Bughin, J., Dobbs, R., Roxburgh, C., et al. (2011). Big Data: The Next Frontier for Innovation. McKinsey Global Institute: Competition and Productivity.

    Google Scholar 

  • Mayer-Schönberger, V., & Cukier, K. (2013). Big Data: A revolution that will transform how we live, work, and think. New York: Houghton Mifflin Harcourt.

    Google Scholar 

  • McAfee A., & Brynjolfsson E. (2012). Big Data: The management revolution. Harvard Business Review, 90 (10), 60–66, 68, 128.

  • McGlynn, E. (2008). The case for keeping quality on the health reform agenda (p. 3). Technical report, June: Testimony before the U.S. Senate Committee on Finance.

    Google Scholar 

  • Mekhjian, H., Saltz, J., Rogers, P., & Kamal, J. (2003). Impact of CPOE order sets on lab orders. In: AMIA Annual Symposium Proceedings, p. 931.

  • Mervis, J. (2012). Agencies rally to tackle Big Data. Science, 336(6077), 22.

    Google Scholar 

  • Mishra, D., Gunasekaran, A., Childe, S., Papadopoulos, T., & Dubey, R. (2016a). Vision, applications and future challenges of Internet of Things: A bibliometric study of the recent literature. Industrial Management and Data Systems (Accepted Paper).

  • Mishra, D., Luo, Z., Jiang, S., Papadopoulos, T., & Dubey, R. (2016b). A bibliographic study on Big Data: Concepts. Trends and Challenges (Accepted Paper): Business Process Management Journal.

    Google Scholar 

  • Narayanam, R., & Narahari, Y. (2011). A shapley value based approach to discover influential nodes in social networks. IEEE Transactions on Automation Science and Engineering, 8(1), 130–147.

    Google Scholar 

  • Neumeyer, L., Robbins, B., Nair, A., & Kesari, A. (2010). S4: Distributed stream computing platform. IEEE Data Mining Workshops (ICDMW) (pp. 170–177). Sydney: Australia.

  • Oh, L., Teo, H., & Sambamurthy, V. (2012). The effects of retail channel integration through the use of information technologies on firm performance. Journal of Operations Management, 30(1), 368–381.

    Google Scholar 

  • O’Leary, D. E. (2011). Blog Mining-Review and extensions: From each according to his opinion. Decision Support Systems, 51(4), 821–830.

    Google Scholar 

  • Oracle. (2012). Big Data for the enterprise. Redwood Shores, CA: Oracle.

  • Oxford Economics. (2011). The new digital economy: How it will transform business. http://www.google.co.in/url?sa=t&rct=j&q=&esrc=s&source=web&cd=3&ved=0CD0QFjAC&url=http%3A%2F%2Fwww.businessandleadership.com%2Fdownload%2Ffs%2Fdoc%2Freports%2Fthe-new-digital-economy-1.pdf&ei=DeHUUpuWM66QiQfjs4HIBA&usg=AFQjCNGQKXaQccqoEy8Na0ctStXgaJPH1Q&bvm=bv.59378465,d.aGc. Accessed 10 January 14.

  • Paloviita, A. (2009). Stakeholder perceptions of alternative food entrepreneurs. Management and Sustainable Development, World Review of Entrepreneurship, 5(4), 395–406.

    Google Scholar 

  • Patil, R. (2014). Supermarket Tesco pioneers big data. http://dataconomy.com/tesco-pioneers-big-data/. Accessed 30 April 2016.

  • Persson, O., Danell, R., & Schneider, J. W. (2009). How to use bibexcel for various types of bibliometric analysis. In: In F. Åström, R. Danell, B. Larsen, & J. W. Schneider (Eds.), Celebrating scholarly communication studies: A Festschrift for Olle Persson at his 60th Birthday. 05-S, International Society for Scientometrics and Informetrics, 9–24.

  • Pilkington, A., & Liston-Heyes, C. (1999). Is production and operations management a discipline? A citation/co-citation study. International Journal of Operations and Production Management, 19(1), 7–20.

    Google Scholar 

  • Pilkington, A., & Meredith, J. (2009). The evolution of the intellectual structure of operations management-1980-2006: A citation/co-citation analysis. Journal of Operations Management, 27(3), 185–202.

    Google Scholar 

  • Radicchi, F., Castellano, C., Cecconi, F., Loreto, V., & Parisi, D. (2004). Defining and identifying communities in networks. Proceedings of the National Academy of Sciences of the United States of America, 101(9), 2658–2663.

    Google Scholar 

  • Ramos-Rodriguez, A. R., & Ruiz-Navarro, J. (2004). Changes in the intellectual structure of strategic management research: A bibliometric study of the Strategic Management Journal, 1980–2000. Strategic Management Journal, 25(10), 981–1004.

    Google Scholar 

  • Records, R. L., & Fisher, Q. K. (2014). Manufacturers connect the dots with Big Data and analytics. Computer Science Corporation (pp. 1–6). Accessed 31 May 2014.

  • Reinsdorf, M. B., Diewert, W. E., & Ehemann, C. (2002). Additive decompositions for Fisher, Törnqvist and geometric mean indexes. Journal of Economic and Social Measurement, 28, 51–61.

    Google Scholar 

  • Richardson, M., & Domingos, P. (2002). Mining knowledge-sharing sites for viral marketing. Proceedings of the eighth ACM SIGKDD international conference on knowledge discovery and data mining, Edmonton (pp. 61–70). Canada: ACM Press.

  • Roberts, S. (2004). Self-experimentation as a source of new ideas: Sleep, mood, health and weight. Behavioral and Brain Sciences, 27, 227–262.

    Google Scholar 

  • Rogers, E. M. (2003). Diffusion of innovations (5th ed.). New York: Free Press.

    Google Scholar 

  • Rowley, J., & Slack, F. (2004). Conducting a literature review. Management Research News, 27, 31–39.

    Google Scholar 

  • Russom, P. (2011a). The Three Vs of Big Data Analytics, TDWI. http://tdwi.org/blogs/philiprussom/2011/06/three-vs-of-big-data-analytics-3-data-velocity.aspx.

  • Russom, P. (2011b). Big Data analytics. Best Practices Report, Fourth Quarter, The Data Warehouse Institute, Renton, WA. September 18 2011. http://tdwi.org.

  • Sagiroglu, S., & Sinanc, D. (2013). Big Data: A review.In International conference on collaboration technologies and systems (CTS) (pp. 42–47).

  • Sakr, S., Liu, A., Batista, D. M., & Alomari, M. (2011). A survey of large scale data management approaches in cloud environments. IEEE Communications Surveys & Tutorials, 13(3), 311–336.

    Google Scholar 

  • Sanders, N. R., & Ganeshan, R. (2015). Production and operations management. Special issue of production and operations management on “Big Data in Supply Chain Management”, 24(5), 852–853.

    Google Scholar 

  • SC Digital. (2014). Impact of Big Data and analytics in supply chain execution. http://www.supplychaindigital.com/logistics/3382/Impact-of-Big-Data-and-Analytics-in-supply-chain-execution. Accessed 30 April 2016

  • Schadt, E. E., Linderman, M. D., Sorenson, J., Lee, L., & Nolan, G. P. (2010). Computational solutions to large-scale data management and analysis. Nature Reviews Genetics, 11(9), 647–657.

    Google Scholar 

  • Schoenherr, T., & Speier-Pero, C. (2015). Data science, predictive analytics, and Big Data in supply chain management: Current state and future potential. Journal of Business Logistics, 36(1), 120–132.

    Google Scholar 

  • Scott, S. G., & Lane, V. R. (2000). A stakeholder approach to organizational identity. Academy of Management Review, 25(1), 43–62.

    Google Scholar 

  • Segel, E., & Heer, J. (2010). Narrative visualization: Telling stories with data. TVCG: Transactions on Visualization and Computer Graphics, 16(6), 1139–1148.

    Google Scholar 

  • Sharplin, A., & Mabry, R. (1985). The relative importance of journals used in management research: An alternative ranking. Human Relations, 38(2), 139–149.

    Google Scholar 

  • Sidorova, A., Evangelopoulos, N., Valacich, J. S., & Ramakrishnan, T. (2008). Uncovering the intellectual core of the information systems discipline. MIS Quarterly, 32(3), 467–482.

    Google Scholar 

  • Slone, R. E. (2004). Leading a supply chain turn around. Harvard Business Review, 82(10), 114–121.

    Google Scholar 

  • Small, H. (1973). Co-citation in the scientific literature: A new measure of the relationship between two documents. Journal of the American Society for Information Science, 24(4), 265–269.

    Google Scholar 

  • Song, M., Fisher, R., Wang, J.-L., & Cui, L.-B. (2016). Environmental performance evaluation with Big Data: Theories and methods. Annals of Operations Research,. doi:10.1007/s10479-016-2158-8.

    Article  Google Scholar 

  • Stieglitz, S., & Dang-Xuan, L. (2013). Emotions and information diffusion in social media–Sentiment of microblogs and sharing behavior. Journal of Management Information Systems, 29, 217–248.

    Google Scholar 

  • Strawn, G. O. (2012). Scientific research: How many paradigms? Educause Review, 47(3), 26–34.

    Google Scholar 

  • Tan, K. H., Zhan, Y., Ji, G., Ye, F., & Chang, C. (2015). Harvesting big data to enhance supply chain innovation capabilities: An analytic infrastructure based on deduction graph. International Journal of Production Economics, 165, 223–233.

    Google Scholar 

  • Terziovski, M. (2010). Innovation practice and its performance implications in small and medium enterprises (SMEs) in the manufacturing sector: A resource-based view. Strategic Management Journal, 31(8), 892–902.

    Google Scholar 

  • Tessier, T. H., & Armstrong, J. S. (2015). Decomposition of time-series by level and change. Journal of Business Research, 68(8), 1755–1758.

    Google Scholar 

  • Thelwall, M., Buckley, K., & Paltoglou, G. (2011). Sentiment in Twitter events. Journal of the American Society for Information Science and Technology, 62, 406–418.

    Google Scholar 

  • Thibeault, J., & Wadsworth, K. (2014). Delivering digital experiences that people want to share. Hoboken: Wiley.

    Google Scholar 

  • Tieman, J. (2003). Experimenting with quality. CMS-premier initiative to reward best, punish worst. Modern Healthcare, 33(28), 6.

    Google Scholar 

  • Trkman, P., McCormack, K., Oliveira, M., & Ladeira, M. (2010). The impact of business analytics on supply chain performance. Decision Support Systems, 49(3), 318–327.

    Google Scholar 

  • Tsai, J., Raghu, T. S., & Shao, B. B. M. (2013). Information systems and technology sourcing strategies of e-retailers for value chain enablement. Journal of Operations Management, 31(6), 345–362.

    Google Scholar 

  • van Eck, N.J., & Waltman, L. (2013). Manual for VOSviewer Version 1.5.4, Universiteit Leiden and Erasmus Universiteit Rotterdam.

  • Vokurka, R. J. (1996). The relative importance of journals used in operations management research: A citation analysis. Journal of Operations Management, 14(4), 345–355.

    Google Scholar 

  • Wagner, A., Anicic, D., Stühmer, R., Stojanovic, N., Harth, A., & Studer, R. (2010). Linked data and complex event processing for the smart energy grid. In Proceedings 2010 of CEUR Workshop.

  • Waller, M. A., & Fawcett, S. E. (2013a). Click here for a data scientist: Big data, predictive analytics, and theory development in the era of a maker movement supply chain. Journal of Business Logistics, 34(4), 249–252.

    Google Scholar 

  • Waller, M. A., & Fawcett, S. E. (2013b). Data science, predictive analytics, and Big Data: A revolution that will transform supply chain design and management. Journal of Business Logistics, 34(2), 77–84.

    Google Scholar 

  • Wamba, S. F., & Akter, S. (2015). Big data analytics for supply chain management: A literature review and research agenda. In J. Barjis, R. Pergl, & E. Babkin (Eds.), Enterprise and Organizational Modeling and Simulation (Vol. 231, pp. 61–72). Springer International Publishing.

  • Wamba, S. F., Akter, S., Edwards, A., Chopin, G., & Gnanzou, D. (2015). How ‘Big Data’ can make big impact: Findings from a systematic review and a longitudinal case study. International Journal of Production Economics, 165, 234–246.

    Google Scholar 

  • Wang, G., Gunasekaran, A., Ngai, E. W. T., & Papadopoulos, T. (2016). Big data analytics in logistics and supply chain management: Certain investigations for research and applications. International Journal of Production Economics, 176, 98–110.

    Google Scholar 

  • Wang, L., Zhan, J., Luo, C., Zhu, Y., Yang, Q., He, Y., et al. (2014). BigDataBench: A Big Data benchmark suite from internet services. New York: IEEE Xplore.

    Google Scholar 

  • Werdigier, J. (2009). Tesco, British grocer, uses weather to predict sales, New York Times, p.1.

  • Whipple, J. M., & Frankel, R. (2000). Strategic alliance success factors. Journal of Supply Chain Management, 36(3), 21–28.

    Google Scholar 

  • White, M. (2012). Digital workplaces: Vision and reality. Business Information Review, 29(4), 205–214.

    Google Scholar 

  • Wong, D. (2012). Data is the next frontier, analytics the new tool: Five trends in big data and analytics, and their implications for innovation and organisations. London: Big Innovation Centre.

    Google Scholar 

  • Yong-Hak, J. (2013). Web of science. Thomson Reuters. http://wokinfo.com/media/pdf/WoSFS_08_7050.pdf.

  • Yu, F. B., Menachemi, N., Berner, E. S., Allison, J. J., Weissman, N. W., & Houston, T. K. (2009). Full implementation of computerized physician entry and medication-related quality outcomes: A study of 3364 hospitals. American Journal of Medical Quality, 24(4), 278–286.

    Google Scholar 

  • Zacharia, Z. G., Sanders, N. R., & Nix, N. W. (2011). The emerging role of the third-party logistics provider (3PL) as an orchestrator. Journal of Business Logistics, 32(1), 40–54.

    Google Scholar 

  • Zhu, H., Madnick, S. E., Lee, Y. W., & Wang, R. Y. (2014). Data and information quality research: Its evolution and future. London: Taylor and Francis Group LLC.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thanos Papadopoulos.

Appendix

Appendix

See Table 10.

Table 10 Journal titles and their abbreviations

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mishra, D., Gunasekaran, A., Papadopoulos, T. et al. Big Data and supply chain management: a review and bibliometric analysis. Ann Oper Res 270, 313–336 (2018). https://doi.org/10.1007/s10479-016-2236-y

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10479-016-2236-y

Keywords

Navigation