Advertisement

Annals of Operations Research

, Volume 262, Issue 2, pp 519–545 | Cite as

How do capital structure and economic regime affect fair prices of bank’s equity and liabilities?

  • Donatien HainautEmail author
  • Yang Shen
  • Yan Zeng
S.I.: Financial Economics

Abstract

This paper considers the capital structure of a bank in a continuous-time regime-switching economy. The modeling framework takes into account various categories of instruments, including equity, contingent convertible debts, straight debts, deposits and deposits insurance. Whereas previous researches concentrate on the determination of the capital structure that maximizes shareholders’ equity, this work focuses on the fair pricing of liabilities that ensures no cross-subsidization among stakeholders. This is discussed in a case study where the bank’s EBIT is modeled by a four-regime process and is fitted to real market data. A numerical analysis reveals that convertible debts can significantly reduce the cost of deposits insurance and straight debts as well as probabilities of bankruptcy. Although it is found that the risk of dilution for shareholders is important, paradoxically, a high conversion rate for the contingent convertible debt, compensated by a low interest cost before conversion, can delay this dilution. Finally, we find that in case of change of economic regime, there exists an optimal capital structure from the shareholder’s perspective.

Keywords

Contingent convertibles Regime-switching Wiener–Hopf factorization Hitting time 

JEL Classification

J26 G11 

References

  1. Abate, J., & Whitt, W. (2006). A unified framework for numerically inverting laplace transforms. INFORMS Journal of Computing, 18(4), 408–421.CrossRefGoogle Scholar
  2. Ammann, M., & Genser, M. (2005). Making structural credit risk models testable: Introducing complex capital structures. University of St. Gallen, Working paper.Google Scholar
  3. Altman, E., Resti, A., & Sironi, A. (2002). The link between default and recovery rates: Effects on the procyclicality of regulatory capital ratios. BIS Working Paper, 113.Google Scholar
  4. Barucci, E., & Del Viva, L. (2012). Countercyclical contigent capital. Journal of Banking & Finance, 36, 1688–1709.CrossRefGoogle Scholar
  5. Barucci, E., & Del Viva, L. (2013). Dynamic capital structure and the contingent capital option. Annals of Finance, 9(3), 337–364.CrossRefGoogle Scholar
  6. Bradley, M., Jarrell, G. A., & Kim, E. H. (1984). On the existence of an optimal capital structure: Theory and evidence. Journal of Finance, 39(3), 857–878.CrossRefGoogle Scholar
  7. Brennan, M., & Schwartz, E. (1978). Corporate income taxes, valuation, and the problem of optimal capital structure. Journal of Business, 51, 103–114.CrossRefGoogle Scholar
  8. Calvet, L., & Fisher, A. (2001). Forecasting multifractal volatility. Journal of Econometrics, 105, 17–58.CrossRefGoogle Scholar
  9. Calvet, L., & Fisher, A. (2004). How to forecast long-run volatility: Regime switching and the estimation of multifractal processes. Journal of Financial Economics, 2, 49–83.CrossRefGoogle Scholar
  10. Chen, N., & Kou, S. (2009). Credit spreads, optimal capital structure and implied volatility with endogeneous default and jump risk. Mathematical Finance, 19(3), 343–378.CrossRefGoogle Scholar
  11. Cholette, L., Heinen, A., & Valdesogo, Al. (2009). Modelling international financial returns with a multivariate regime switching copula. Journal of Financial Econometrics, 7(4), 437–480.CrossRefGoogle Scholar
  12. Corcuera, J. M., De Spiegeleer, J., Fajardo, J., Jönsson, H., Schoutens, W., & Valdivia, A. (2014). Close form pricing formulas for Coupon Cancellable CoCos. Journal of Banking & Finance,. doi: 10.1016/j.jbankfin.2014.01.025.
  13. De Spiegeleer, J., & Schoutens, W. (2012). Steering a bank around a death spiral: Multiple Trigger CoCos. Wilmott Magazine, 59, 62–69.CrossRefGoogle Scholar
  14. De Spiegeleer, J., & Schoutens, W. (2013). Multiple Trigger CoCos: Contingent debt without death-spiral risk. Financial Markets, Institution and Instruments Journal, 22(2), 129–141.CrossRefGoogle Scholar
  15. Elliott, R. J., Chan, L., & Siu, T. K. (2005). Option pricing and Esscher transform under regime switching. Annals of Finance, 1, 423–432.CrossRefGoogle Scholar
  16. Elliott, R. J., & Siu, T. K. (2013). Option pricing and filtering with hidden Markov-modulated pure-jump processes. Applied Mathematical Finance, 20(1), 1–25.CrossRefGoogle Scholar
  17. Gatumel, M., & Ielpo, F. (2011). The number of regimes across asset returns: Identication and economic value. Working paper, available at SSRN 1925058.Google Scholar
  18. Gerber, H. U., & Shiu, E. S. W. (1994). Options pricing by Esscher transform. Transactions of the Society of Actuaries, 26, 99–191.Google Scholar
  19. Glasserman, P., & Nouri, B. (2012). Contingent capital with a capital-ratio trigger. Management Science, 58(10), 1816–1833.CrossRefGoogle Scholar
  20. Guidolin, M., & Timmermann, A. (2005). Economic implications of bull and bear regimes in UK stock and bond returns. The Economic Journal, 115, 11–143.CrossRefGoogle Scholar
  21. Guidolin, M., & Timmermann, A. (2007). Asset allocation under multivariate regime switching. Journal of Economic Dynamics and Control, 31(11), 3503–3544.CrossRefGoogle Scholar
  22. Guidolin, M., & Timmermann, A. (2008). International asset allocation under regime switching, skew, and kurtosis preferences. Review of Financial Studies, 21(2), 889–935.CrossRefGoogle Scholar
  23. Hackbarth, D., Miao, J., & Morellec, E. (2006). Capital structure, credit risk and macroeconomics conditions. Journal of Financial Economics, 82, 519–550.CrossRefGoogle Scholar
  24. Hainaut, D., & MacGilchrist, R. (2012). Strategic asset allocation with switching dependence. Annals of Finance, 8(1), 75–96.CrossRefGoogle Scholar
  25. Hamilton, J. D. (1989). A new approach to the economic analysis of nonstationary time series and the business cycle. Econometrica, 57(2), 357–384.CrossRefGoogle Scholar
  26. Hilberink, B., & Rogers, L. C. G. (2002). Optimal capital structure and endogenous default. Finance and Stochastics, 6, 237–263.CrossRefGoogle Scholar
  27. Jiang, Z., & Pistorius, M. R. (2008). On perpetual American put valuation and first-passage in a regime-switching model with jumps. Finance and Stochastics, 12(3), 331–355.CrossRefGoogle Scholar
  28. Koziol, C., & Lawrenz, J. (2012). Contingent convertibles. Solving or seeding the next banking crisis. Journal of Banking & Finance, 36, 90–104.CrossRefGoogle Scholar
  29. Leland, H. (1994). Corporate debt value, bond covenants, and optimal capital structure. Journal of Finance, 49, 1213–1252.CrossRefGoogle Scholar
  30. Leland, H., & Toft, K. (1996). Optimal capital structure, credit spreads. Journal of Finance, 51, 987–1019.CrossRefGoogle Scholar
  31. Leland, H. (1998). Agency costs, and capital structure. Journal of Finance, 53, 1213–1243.CrossRefGoogle Scholar
  32. Myers, S. C. (1984). The capital structure puzzle. Journal of Finance, 39(3), 575–592.CrossRefGoogle Scholar
  33. Modigliani, F., & Miller, M. (1958). The cost of capital, corporation finance and the theory of investment. American Economic Review, 48, 261–297.Google Scholar
  34. Pennacchi, G. (2010). A structural model of contingent bank capital. The federal Reserve Bank of Cleveland. Working paper.Google Scholar
  35. Rogers, L., & Shi, Z. (1994). Computing the invariant law of a fluid model. Journal of Applied Probability, 31(4), 885–896.CrossRefGoogle Scholar
  36. Titman, S., & Wessels, R. (1988). The determinants of capital structure choice. Journal of Finance, 43(1), 1–19.CrossRefGoogle Scholar
  37. Titman, S., & Tsyplakov, S. (2007). A dynamic model of optimal capital structure. Review of Finance, 11(3), 401–451.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  1. 1.ESC Rennes Business School and CRESTRennesFrance
  2. 2.York UniversityTorontoCanada
  3. 3.Lingnan (University) CollegeSun Yat-sen UniversityGuangzhouPeople’s Republic of China

Personalised recommendations