Annals of Operations Research

, Volume 248, Issue 1–2, pp 515–529 | Cite as

Robust DEA to assess the reliability of methyl methacrylate-hardened hybrid poplar wood

Original Paper

Abstract

We transformed a data envelopment analysis (DEA) optimization model into a robust second-order cone equivalent to immunize against output perturbation in an uncertainty set. The robust DEA framework was then used to assess the effect of a wood hardening treatment using methyl methacrylate (MMA) on selected hybrid poplar clones. Because the performance of MMA-hardened hybrid poplar clones varies across clones, ranking hardened clones is crucial for developing hardening treatments for specific industrial applications. The numerical results demonstrate that the hardening treatment can be optimized by applying the proposed DEA framework to select the best hybrid poplar clone types and the optimal amount of impregnated chemicals.

Keywords

Hybrid poplar Hardening Methyl methacrylate (MMA) Data envelopment analysis (DEA) Uncertainty Robust optimization 

References

  1. Balatinecz, J. J., Kretschmann, D. E., & Leclercq, A. (2001). Achievements in the utilization of poplarwood : Guideposts for the future. Forestry Chronicle, 77(2), 265–269.CrossRefGoogle Scholar
  2. Ben-Tal, A., & Nemirovski, A. (2000). Robust solutions of linear programming problems contaminated with uncertain data. Mathematical Programming, 88(3), 411–424.CrossRefGoogle Scholar
  3. Ben-Tal, A., & Nemirovski, A. (2002). Robust optimization—methodology and applications. Mathematical Programming, 92(3), 453–480.CrossRefGoogle Scholar
  4. Bertsimas, D., & Sim, M. (2004). The price of robustness. Operations Research, 52(1), 35–53.CrossRefGoogle Scholar
  5. Birge, J. R., & Louveaux, F. (2011). Introduction to Stochastic Programming. Berlin: Springer.CrossRefGoogle Scholar
  6. Boyd, S., & Vandenberghe, L. (2004). Convex optimization. New York, NY: Cambridge University Press.CrossRefGoogle Scholar
  7. Charnes, A., Cooper, W., & Rhodes, E. (1978). Measuring the efficiency of decision making units. European Journal of Operational Research, 2(6), 429–444.CrossRefGoogle Scholar
  8. Cooper, W. W., Park, K. S., & Yu, G. (2001). An illustrative application of idea (imprecise data envelopment analysis) to a korean mobile telecommunication company. Operations Research, 49(6), 807–820.CrossRefGoogle Scholar
  9. Criswell, D., & Thompson, R. (1996). Data envelopment analysis of space and terrestrially-based large scale commercial power systems for earth: A prototype analysis of their relative economic advantages. Solar Energy, 56(1), 119–131. Wireless Power Transmission.CrossRefGoogle Scholar
  10. Ding, W. D., Koubaa, A., Chaala, A., Belem, T., & Krause, C. (2008). Relationship between wood porosity, wood density and methyl methacrylate impregnation rate. Wood Material Science & Engineering, 3(1–2), 62–70. doi:10.1080/17480270802607947.CrossRefGoogle Scholar
  11. Ding, W. D., Koubaa, A., & Chaala, A. (2012). Dimensional stability of methyl methacrylate hardened hybrid poplar wood. BioResources, 7(1), 504–520.Google Scholar
  12. Ding, W. D., Koubaa, A., & Chaala, A. (2013). Mechanical properties of mma-hardened hybrid poplar wood. Industrial Crops and Products, 46, 304–310.CrossRefGoogle Scholar
  13. Koubaa, A., Ding, W. D., Chaala, A., & Bouafif, H. (2012). Surface properties of methyl methacrylate hardened hybrid poplar wood. Journal of Applied Polymer Science, 123, 1428–1436.CrossRefGoogle Scholar
  14. Kretschmann, D., Isebrands J. G., Stanosz, G., Dramm, J. R., Olstad, A., Cole, P., & Samsel, J. (1999). Structural lumber properties of hybrid poplar. Research paper FPL, U.S: Department of Agriculture, Forest Service, Forest Products Laboratory.Google Scholar
  15. Lu, C. C. (2015). Robust data envelopment analysis approaches for evaluating algorithmic performance. Computers & Industrial Engineering, 81, 78–89.CrossRefGoogle Scholar
  16. Report (2014) The state of canada’s forests: Annual report 2014. Natural Resources Canada.Google Scholar
  17. Shokouhi, A. H., Hatami-Marbini, A., Tavana, M., & Saati, S. (2010). A robust optimization approach for imprecise data envelopment analysis. Computers & Industrial Engineering, 59(3), 387–397.CrossRefGoogle Scholar
  18. Simar, L., Wilson, P. (2007). Estimation and inference in two-stage, semi-parametric models of production processes. Journal of Econometrics, 136(1),31–64. http://EconPapers.repec.org/RePEc:eee:econom:v:136:y:2007:i:1:p:31-64.
  19. Witte, K. D., & Marques, R. C. (2010). Influential observations in frontier models, a robust non-oriented approach to the water sector. Annals of Operations Research, 181, 377–392.CrossRefGoogle Scholar
  20. Wu, D., Liang, L. (2009). Ecological footprint forecasting and estimating using neural networks and dea. International Journal of Global Environmental Issues, 9(3):249–258. http://www.inderscienceonline.com/doi/pdf/10.1504/IJGENVI.2009.026946.
  21. Wu, D., & Wu, D. D. (2010). Performance evaluation and risk analysis of online banking service. Kybernetes, 39(5), 723–734. doi:10.1108/03684921011043215.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  1. 1.Department of Mechanical and Industrial EngineeringUniversity of TorontoTorontoCanada
  2. 2.Stockholm Business SchoolStockholm UniversityStockholmSweden
  3. 3.Chaire de recherche du Canada sur la valorisation, la caracterisation et la transformation du boisUniversity du Quebec en Abitibi-TemiscamingueQuebecCanada
  4. 4.Service de Recherche et d’expertise en Transformation des produits forestiers (SEREX)QuébecCanada
  5. 5.Department of MathematicsUniversity of TorontoTorontoCanada

Personalised recommendations