Detecting robust cliques in graphs subject to uncertain edge failures

  • Oleksandra Yezerska
  • Sergiy Butenko
  • Vladimir L. Boginski
S.I.: Risk Management Approaches in Engineering Applications

Abstract

This paper develops and compares several heuristic approaches, as well as an exact combinatorial branch-and-bound algorithm, for detecting maximum robust cliques in graphs subjected to multiple uncertain edge failures. The desired robustness properties are enforced using conditional value-at-risk measure. The proposed heuristics are adaptations of the well-known tabu search and GRASP methods, whereas the exact approach is an extension of Östergård’s algorithm for the maximum clique problem. The results of computational experiments on DIMACS graph instances are reported.

Keywords

Maximum clique Robust clique Conditional value-at-risk Heuristic  Tabu search GRASP 

References

  1. Abello, J., Pardalos, P. M., & Resende, M. G. C. (1999). On maximum clique problems in very large graphs. DIMACS Series, 50, 119–130.Google Scholar
  2. Balas, E., & Xue, J. (1996). Weighted and unweighted maximum clique algorithms with upper bounds from fractional coloring. Algorithmica, 15, 397–412.CrossRefGoogle Scholar
  3. Bomze, I. M., Budinich, M., Pardalos, P. M., & Pelillo, M. (1999). The maximum clique problem. In Handbook of Combinatorial Optimization, (pp. 1–74). Springer, New York.Google Scholar
  4. Butenko, S., & Wilhelm, W. E. (2006). Clique-detection models in computational biochemistry and genomics. European Journal of Operational Research, 173(1), 1–17.CrossRefGoogle Scholar
  5. Carraghan, R., & Pardalos, P. (1990). An exact algorithm for the maximum clique problem. Operations Research Letters, 9, 375–382.CrossRefGoogle Scholar
  6. Corno, F., Prinetto, P., & Sonza Reorda, M. (1995). Using symbolic techniques to find the maximum clique in very large sparse graphs. In Proceedings of the 1995 European conference on Design and Test, EDTC ’95, (pp. 320–324), Washington, DC, USA, 1995. IEEE Computer Society.Google Scholar
  7. Deane, C. M., Salwiński, L., Xenarios, I., & Eisenberg, D. (2002). Protein interactions: two methods for assessment of the reliability of high throughput observations. Molecular & Cellular Proteomics, 1(5), 349–356.Google Scholar
  8. Deng, M., Sun, F., & Chen, T. (2002). Assessment of the reliability of protein–protein interactions and protein function prediction. In Pacific Symposium on Biocomputing (PSB 2003), (pp. 140–151), 2002.Google Scholar
  9. DIMACS. NP Hard Problems: Maximum Clique, Graph Coloring, and Satisfiability. The Second DIMACS Implementation Challenge. http://dimacs.rutgers.edu/Challenges/, 1992–1993.
  10. DIMACS. Algorithm Implementation Challenge: Graph Partitioning and Graph Clustering. The Tenth DIMACS Implementation Challenge. http://dimacs.rutgers.edu/Challenges/, 2012.
  11. Feo, T. A., & Resende, M. G. C. (1989). A probabilistic heuristic for a computationally difficult set covering problem. Operations Research Letters, 8, 67–71.CrossRefGoogle Scholar
  12. Feo, T. A., & Resende, M. G. C. (1995). Greedy randomized adaptive search procedures. Journal of Global Optimization, 6, 109–133.CrossRefGoogle Scholar
  13. Fortunato, S. (2010). Community detection in graphs. Physics Reports, 486(3), 75–174.CrossRefGoogle Scholar
  14. Friden, C., Hertz, A., & de Werra, D. (1989). STABULUS: A technique for finding stable sets in large graphs with tabu search. Computing, 42, 35–44.CrossRefGoogle Scholar
  15. Gendreau, M., Soriano, P., & Salvail, L. (1993). Solving the maximum clique problem using a tabu search approach. Annals of Operations Research, 41, 385–403.CrossRefGoogle Scholar
  16. Glover, F. (1986). Future paths for integer programming and links to artificial intelligence. Computers and Operations Research, 13(5), 533–549.CrossRefGoogle Scholar
  17. Glover, F. (1989). Tabu search. Part I. ORSA Journal on Computing, 1(3), 190–206.CrossRefGoogle Scholar
  18. Glover, F. (1990). Tabu search. Part II. ORSA Journal on Computing, 2(1), 4–32.CrossRefGoogle Scholar
  19. Goldberg, D. S., & Roth, F. P. (2003). Assessing experimentally derived interactions in a small world. Proceedings of the National Academy of Sciences, 100(8), 4372–4376.CrossRefGoogle Scholar
  20. Hintsanen, P. (2007). The most reliable subgraph problem. In Knowledge Discovery in Databases: PKDD 2007, (pp. 471–478). Springer, 2007.Google Scholar
  21. Hintsanen, P., & Toivonen, H. (2008). Finding reliable subgraphs from large probabilistic graphs. Data Mining and Knowledge Discovery, 17(1), 3–23.CrossRefGoogle Scholar
  22. Jin, R., Liu, L., & Aggarwal, C. (2011). Discovering highly reliable subgraphs in uncertain graphs. In Proceedings of the 17th ACM SIGKDD international conference on Knowledge discovery and data mining, (pp. 992–1000). ACM, 2011.Google Scholar
  23. Kollios, G., Potamias, M., & Terzi, E. (2013). Clustering large probabilistic graphs. IEEE Transactions on Knowledge and Data Engineering, 25(2), 325–336.CrossRefGoogle Scholar
  24. Krokhmal, P., Murphey, R., Pardalos, P. M., Uryasev, S., & Zrazhevski, G. (2003). Robust decision making: Addressing uncertainties in distributions. In S. Butenko, R. Murphey, & P. M. Pardalos (Eds.), Cooperative Control: Models, Applications and Algorithms, volume 1 of Cooperative Systems (pp. 165–185). New York: Springer.CrossRefGoogle Scholar
  25. Li, X., Wu, M., Kwoh, C.-K., & Ng, S.-K. (2010). Computational approaches for detecting protein complexes from protein interaction networks: a survey. BMC Genomics, 11(Suppl 1), S3.CrossRefGoogle Scholar
  26. Liu, L., Jin, R., Aggarwal, C., & Shen, Y. (2012). Reliable clustering on uncertain graphs. In ICDM, (pp. 459–468). Citeseer, 2012.Google Scholar
  27. Luce, R., & Perry, A. (1949). A method of matrix analysis of group structure. Psychometrika, 14, 95–116.CrossRefGoogle Scholar
  28. Miao, Z., Balasundaram, B., & Pasiliao, E. L. (2014). An exact algorithm for the maximum probabilistic clique problem. Journal of Combinatorial Optimization, 28, 105–120.CrossRefGoogle Scholar
  29. Östergård, P. R. J. (2002). A fast algorithm for the maximum clique problem. Discrete Applied Mathematics, 120, 197–207.CrossRefGoogle Scholar
  30. Palmquist, J., Krohmal, P., & Uryasev, S. (2002). Portfolio optimization with conditional value-at-risk objective and constraints. The Journal of Risk, 2, 11–27.Google Scholar
  31. Pattillo, J., Youssef, N., & Butenko, S. (2013). On clique relaxation models in network analysis. European Journal of Operational Research, 226, 9–18.CrossRefGoogle Scholar
  32. Rockafellar, R. T., & Uryasev, S. (2000). Optimization of conditional value-at-risk. The Journal of Risk, 2, 21–42.Google Scholar
  33. Rockafellar, R. T., & Uryasev, S. (2002). Conditional value-at-risk for general loss distributions. Journal of Banking and Finance, 26(7), 1443–1471.CrossRefGoogle Scholar
  34. Rysz, M., Mirghorbani, M., Krokhmal, P., & Pasiliao, E. L. (2014). On risk-averse maximum weighted subgraph problems. Journal of Combinatorial Optimization, 28(1), 167–185.CrossRefGoogle Scholar
  35. Seidman, S. B., & Foster, B. L. (1978). A graph theoretic generalization of the clique concept. Journal of Mathematical Sociology, 6, 139–154.CrossRefGoogle Scholar
  36. Soriano, P., & Gendreau, M. (1996). Diversification strategies in tabu search algorithms for the maximum clique problem. Annals of Operations Research, 63, 189–207.CrossRefGoogle Scholar
  37. Spirin, V., & Mirny, L. A. (2003). Protein complexes and functional modules in molecular networks. Proceedings of the National Academy of Sciences, 100(21), 12123–12128.CrossRefGoogle Scholar
  38. Tomita, E., & Seki, T. (2003). An efficient branch-and-bound algorithm for finding a maximum clique. In C. Calude, M. Dinneen, & V. Vajnovszki (Eds.), Discrete mathematics and theoretical computer science, volume 2731 of lecture notes in computer science (pp. 278–289). Berlin: Springer.Google Scholar
  39. Verma, A., Buchanan, A., & Butenko, S. (2015). Solving the maximum clique and vertex coloring problems on very large sparse networks. INFORMS Journal on Computing, 27, 164–177.CrossRefGoogle Scholar
  40. Wu, Q., & Hao, J. K. (2013). An adaptive multistart tabu search approach to solve the maximum clique problem. Journal of Combinatorial Optimization, 26, 86–108.CrossRefGoogle Scholar
  41. Wu, Q., & Hao, J. K. (2015). A review on algorithms for maximum clique problems. European Journal of Operational Research, 242(3), 693–709.CrossRefGoogle Scholar
  42. Wu, Q., Hao, J. K., & Glover, F. (2012). Multi-neighborhood tabu search for the maximum weight clique problem. Annals of Operations Research, 196, 611–634.CrossRefGoogle Scholar
  43. Yannakakis, M. (1978). Node-and edge-deletion np-complete problems. In Proceedings of the 10th Annual ACM Symposium on Theory of Computing, 1978.Google Scholar
  44. Yu, H., Paccanaro, A., Trifonov, V., & Gerstein, M. (2006). Predicting interactions in protein networks by completing defective cliques. Bioinformatics, 22, 823–829.CrossRefGoogle Scholar
  45. Zou, Z., Li, J., Gao, H., & Zhang, S. (2010). Finding top-\(k\) maximal cliques in an uncertain graph. In Proceedings of the 26th IEEE International Conference on Data Engineering (ICDE), (pp. 649–652). IEEE, 2010.Google Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  • Oleksandra Yezerska
    • 1
  • Sergiy Butenko
    • 1
  • Vladimir L. Boginski
    • 2
    • 3
  1. 1.Industrial and Systems EngineeringTexas A&M UniversityCollege StationUSA
  2. 2.Department of Industrial and Systems Engineering, Research and Engineering Education Facility (REEF)University of FloridaShalimarUSA
  3. 3.Department of Industrial Engineering and Management SystemsUniversity of Central FloridaOrlandoUSA

Personalised recommendations