Skip to main content
Log in

Detecting robust cliques in graphs subject to uncertain edge failures

Annals of Operations Research Aims and scope Submit manuscript

Abstract

This paper develops and compares several heuristic approaches, as well as an exact combinatorial branch-and-bound algorithm, for detecting maximum robust cliques in graphs subjected to multiple uncertain edge failures. The desired robustness properties are enforced using conditional value-at-risk measure. The proposed heuristics are adaptations of the well-known tabu search and GRASP methods, whereas the exact approach is an extension of Östergård’s algorithm for the maximum clique problem. The results of computational experiments on DIMACS graph instances are reported.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Abello, J., Pardalos, P. M., & Resende, M. G. C. (1999). On maximum clique problems in very large graphs. DIMACS Series, 50, 119–130.

    Google Scholar 

  • Balas, E., & Xue, J. (1996). Weighted and unweighted maximum clique algorithms with upper bounds from fractional coloring. Algorithmica, 15, 397–412.

    Article  Google Scholar 

  • Bomze, I. M., Budinich, M., Pardalos, P. M., & Pelillo, M. (1999). The maximum clique problem. In Handbook of Combinatorial Optimization, (pp. 1–74). Springer, New York.

  • Butenko, S., & Wilhelm, W. E. (2006). Clique-detection models in computational biochemistry and genomics. European Journal of Operational Research, 173(1), 1–17.

    Article  Google Scholar 

  • Carraghan, R., & Pardalos, P. (1990). An exact algorithm for the maximum clique problem. Operations Research Letters, 9, 375–382.

    Article  Google Scholar 

  • Corno, F., Prinetto, P., & Sonza Reorda, M. (1995). Using symbolic techniques to find the maximum clique in very large sparse graphs. In Proceedings of the 1995 European conference on Design and Test, EDTC ’95, (pp. 320–324), Washington, DC, USA, 1995. IEEE Computer Society.

  • Deane, C. M., Salwiński, L., Xenarios, I., & Eisenberg, D. (2002). Protein interactions: two methods for assessment of the reliability of high throughput observations. Molecular & Cellular Proteomics, 1(5), 349–356.

  • Deng, M., Sun, F., & Chen, T. (2002). Assessment of the reliability of protein–protein interactions and protein function prediction. In Pacific Symposium on Biocomputing (PSB 2003), (pp. 140–151), 2002.

  • DIMACS. NP Hard Problems: Maximum Clique, Graph Coloring, and Satisfiability. The Second DIMACS Implementation Challenge. http://dimacs.rutgers.edu/Challenges/, 1992–1993.

  • DIMACS. Algorithm Implementation Challenge: Graph Partitioning and Graph Clustering. The Tenth DIMACS Implementation Challenge. http://dimacs.rutgers.edu/Challenges/, 2012.

  • Feo, T. A., & Resende, M. G. C. (1989). A probabilistic heuristic for a computationally difficult set covering problem. Operations Research Letters, 8, 67–71.

    Article  Google Scholar 

  • Feo, T. A., & Resende, M. G. C. (1995). Greedy randomized adaptive search procedures. Journal of Global Optimization, 6, 109–133.

    Article  Google Scholar 

  • Fortunato, S. (2010). Community detection in graphs. Physics Reports, 486(3), 75–174.

    Article  Google Scholar 

  • Friden, C., Hertz, A., & de Werra, D. (1989). STABULUS: A technique for finding stable sets in large graphs with tabu search. Computing, 42, 35–44.

    Article  Google Scholar 

  • Gendreau, M., Soriano, P., & Salvail, L. (1993). Solving the maximum clique problem using a tabu search approach. Annals of Operations Research, 41, 385–403.

    Article  Google Scholar 

  • Glover, F. (1986). Future paths for integer programming and links to artificial intelligence. Computers and Operations Research, 13(5), 533–549.

    Article  Google Scholar 

  • Glover, F. (1989). Tabu search. Part I. ORSA Journal on Computing, 1(3), 190–206.

    Article  Google Scholar 

  • Glover, F. (1990). Tabu search. Part II. ORSA Journal on Computing, 2(1), 4–32.

    Article  Google Scholar 

  • Goldberg, D. S., & Roth, F. P. (2003). Assessing experimentally derived interactions in a small world. Proceedings of the National Academy of Sciences, 100(8), 4372–4376.

    Article  Google Scholar 

  • Hintsanen, P. (2007). The most reliable subgraph problem. In Knowledge Discovery in Databases: PKDD 2007, (pp. 471–478). Springer, 2007.

  • Hintsanen, P., & Toivonen, H. (2008). Finding reliable subgraphs from large probabilistic graphs. Data Mining and Knowledge Discovery, 17(1), 3–23.

    Article  Google Scholar 

  • Jin, R., Liu, L., & Aggarwal, C. (2011). Discovering highly reliable subgraphs in uncertain graphs. In Proceedings of the 17th ACM SIGKDD international conference on Knowledge discovery and data mining, (pp. 992–1000). ACM, 2011.

  • Kollios, G., Potamias, M., & Terzi, E. (2013). Clustering large probabilistic graphs. IEEE Transactions on Knowledge and Data Engineering, 25(2), 325–336.

    Article  Google Scholar 

  • Krokhmal, P., Murphey, R., Pardalos, P. M., Uryasev, S., & Zrazhevski, G. (2003). Robust decision making: Addressing uncertainties in distributions. In S. Butenko, R. Murphey, & P. M. Pardalos (Eds.), Cooperative Control: Models, Applications and Algorithms, volume 1 of Cooperative Systems (pp. 165–185). New York: Springer.

    Chapter  Google Scholar 

  • Li, X., Wu, M., Kwoh, C.-K., & Ng, S.-K. (2010). Computational approaches for detecting protein complexes from protein interaction networks: a survey. BMC Genomics, 11(Suppl 1), S3.

    Article  Google Scholar 

  • Liu, L., Jin, R., Aggarwal, C., & Shen, Y. (2012). Reliable clustering on uncertain graphs. In ICDM, (pp. 459–468). Citeseer, 2012.

  • Luce, R., & Perry, A. (1949). A method of matrix analysis of group structure. Psychometrika, 14, 95–116.

    Article  Google Scholar 

  • Miao, Z., Balasundaram, B., & Pasiliao, E. L. (2014). An exact algorithm for the maximum probabilistic clique problem. Journal of Combinatorial Optimization, 28, 105–120.

    Article  Google Scholar 

  • Östergård, P. R. J. (2002). A fast algorithm for the maximum clique problem. Discrete Applied Mathematics, 120, 197–207.

    Article  Google Scholar 

  • Palmquist, J., Krohmal, P., & Uryasev, S. (2002). Portfolio optimization with conditional value-at-risk objective and constraints. The Journal of Risk, 2, 11–27.

    Google Scholar 

  • Pattillo, J., Youssef, N., & Butenko, S. (2013). On clique relaxation models in network analysis. European Journal of Operational Research, 226, 9–18.

    Article  Google Scholar 

  • Rockafellar, R. T., & Uryasev, S. (2000). Optimization of conditional value-at-risk. The Journal of Risk, 2, 21–42.

    Article  Google Scholar 

  • Rockafellar, R. T., & Uryasev, S. (2002). Conditional value-at-risk for general loss distributions. Journal of Banking and Finance, 26(7), 1443–1471.

    Article  Google Scholar 

  • Rysz, M., Mirghorbani, M., Krokhmal, P., & Pasiliao, E. L. (2014). On risk-averse maximum weighted subgraph problems. Journal of Combinatorial Optimization, 28(1), 167–185.

    Article  Google Scholar 

  • Seidman, S. B., & Foster, B. L. (1978). A graph theoretic generalization of the clique concept. Journal of Mathematical Sociology, 6, 139–154.

    Article  Google Scholar 

  • Soriano, P., & Gendreau, M. (1996). Diversification strategies in tabu search algorithms for the maximum clique problem. Annals of Operations Research, 63, 189–207.

    Article  Google Scholar 

  • Spirin, V., & Mirny, L. A. (2003). Protein complexes and functional modules in molecular networks. Proceedings of the National Academy of Sciences, 100(21), 12123–12128.

    Article  Google Scholar 

  • Tomita, E., & Seki, T. (2003). An efficient branch-and-bound algorithm for finding a maximum clique. In C. Calude, M. Dinneen, & V. Vajnovszki (Eds.), Discrete mathematics and theoretical computer science, volume 2731 of lecture notes in computer science (pp. 278–289). Berlin: Springer.

    Google Scholar 

  • Verma, A., Buchanan, A., & Butenko, S. (2015). Solving the maximum clique and vertex coloring problems on very large sparse networks. INFORMS Journal on Computing, 27, 164–177.

    Article  Google Scholar 

  • Wu, Q., & Hao, J. K. (2013). An adaptive multistart tabu search approach to solve the maximum clique problem. Journal of Combinatorial Optimization, 26, 86–108.

    Article  Google Scholar 

  • Wu, Q., & Hao, J. K. (2015). A review on algorithms for maximum clique problems. European Journal of Operational Research, 242(3), 693–709.

    Article  Google Scholar 

  • Wu, Q., Hao, J. K., & Glover, F. (2012). Multi-neighborhood tabu search for the maximum weight clique problem. Annals of Operations Research, 196, 611–634.

    Article  Google Scholar 

  • Yannakakis, M. (1978). Node-and edge-deletion np-complete problems. In Proceedings of the 10th Annual ACM Symposium on Theory of Computing, 1978.

  • Yu, H., Paccanaro, A., Trifonov, V., & Gerstein, M. (2006). Predicting interactions in protein networks by completing defective cliques. Bioinformatics, 22, 823–829.

    Article  Google Scholar 

  • Zou, Z., Li, J., Gao, H., & Zhang, S. (2010). Finding top-\(k\) maximal cliques in an uncertain graph. In Proceedings of the 26th IEEE International Conference on Data Engineering (ICDE), (pp. 649–652). IEEE, 2010.

Download references

Acknowledgments

The authors would like to thank two anonymous referees whose suggestions helped to improve the paper. This material is based upon work supported by the AFRL Mathematical Modeling and Optimization Institute. Partial support by AFOSR under Grants FA9550-12-1-0103 and FA8651-12-2-0011, as well as the U.S. Department of Energy grant DE-SC0002051 is also gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sergiy Butenko.

Appendix

Appendix

See Tables 5 and 6.

Table 5 Values of \({ CVaR}_{0.9}[L_C]\) for various sizes of clique C, where each edge fails with the same probability p
Table 6 Value of \({ CVaR}_{0.95}[L_C]\) for various sizes of clique C, where each edge fails with the same probability p

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yezerska, O., Butenko, S. & Boginski, V.L. Detecting robust cliques in graphs subject to uncertain edge failures. Ann Oper Res 262, 109–132 (2018). https://doi.org/10.1007/s10479-016-2161-0

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10479-016-2161-0

Keywords

Navigation