Abstract
The problem (LFP) of finding a feasible solution to a given linear semiinfinite system arises in different contexts. This paper provides an empirical comparative study of relaxation algorithms for (LFP). In this study we consider, together with the classical algorithm, implemented with different values of the fixed parameter (the step size), a new relaxation algorithm with random parameter which outperforms the classical one in most test problems whatever fixed parameter is taken. This new algorithm converges geometrically to a feasible solution under mild conditions. The relaxation algorithms under comparison have been implemented using the extended cutting angle method for solving the global optimization subproblems.
This is a preview of subscription content, log in to check access.
References
Agmon, S. (1954). The relaxation method for linear inequalities. Canadian Journal of Mathematics, 6, 382–392.
Auslender, A., Ferrer, A., Goberna, M. A., & López, M. A. (2015). Comparative study of RPSALG algorithm for convex semiinfinite programming. Computational Optimization and Applications, 60, 59–87.
Bagirov, A. M., & Rubinov, A. M. (2000). Global minimization of increasing positively homogeneous functions over the unit simplex. Annals of Operations Research, 98, 171–187.
Bagirov, A. M., & Rubinov, A. M. (2001). Modified versions of the cutting angle method. In N. Hadjisavvas & P. M. Pardalos (Eds.), Advances in convex analysis and global optimization (pp. 245–268). Dordrecht: Kluwer.
Bartle, R. G. (1964). The elements of real analysis. New York: Wiley.
Basu, A., De Loer, J. A., & Junod, M. (2013). On Chubanov’s method for linear programming. INFORMS Journal on Computing, 26, 336–350.
Beliakov, G. (2003). Geometry and combinatorics of the cutting angle method. Optimization, 52, 379–394.
Beliakov, G. (2004). Cutting angle method. A tool for constrained global optimization. Optimization Methods and Software, 19, 137–151.
Beliakov, G. (2005). A review of applications of the cutting angle method. In A. M. Rubinov & V. Jeyakumar (Eds.), Continuous Optimization (pp. 209–248). New York: Springer.
Beliakov, G. (2008). Extended cutting angle method of global optimization. Pacific Journal of Optimization, 4, 153–176.
Beliakov, G., & Ferrer, A. (2010). Bounded lower subdifferentiability optimization techniques: Applications. Journal of Global Optimization, 47, 211–231.
BenTal, A., El Ghaoui, L., & Nemirovski, A. (2009). Robust optimization. Princeton: Princeton University Press.
BenTal, A., & Nemirovski, A. (1999). Robust solutions of uncertain linear programs. Operations Research Letters, 25(1), 1–13.
Betke, U. (2004). Relaxation, new combinatorial and polynomial algorithms for the linear feasibility problem. Discrete and Computational Geometry, 32, 317–338.
Borwein, J. M., & Tam, M. K. (2014). A cyclic Douglas–Rachford iteration scheme. Journal of Optimization Theory and Applications, 160, 1–29.
Cánovas, M. J., López, M. A., Parra, J., & Toledo, F. J. (2005). Distance to illposedness and the consistency value of linear semiinfinite inequality systems. Mathematical Programming, 103A, 95–126.
Cheney, E. W., & Goldstein, A. A. (1959). Newton method for convex programming and Tchebycheff approximation. Numerissche Mathematik, 1, 253–268.
Combettes, P. L. (1996). The convex feasibility problem in image recovery. In P. Hawkes (Ed.), Advances in imaging and electron physics (Vol. 95, pp. 155–270). New York: Academic Press.
Dinh, N., Goberna, M. A., & López, M. A. (2006). From linear to convex systems: Consistency, Farkas Lemma and applications. Journla of Convex Analysis, 13, 279–290.
Dolan, E. D., & Moré, J. J. (2002). Benchmarking optimization software with performance profiles. Mathematical Programming, 91, 201–213.
Eriksson, K., Estep, D., & Johnson, C. (2004). Applied mathematics: Body and soul. Berlin: Springer.
Ferrer, A., & Miranda, E. (2013). Random test examples with known minimum for convex semiinfinite programming problems. Eprints UPC. http://hdl.handle.net/2117/19118. Accessed 28 February 2015.
Goberna, M. A., Jeyakumar, V., Li, G., & VicentePérez, J. (2014). Robust solutions of uncertain multiobjective linear semiinfinite programming. SIAM Journal on Optimization, 24, 1402–1419.
Goberna, M. A., Jeyakumar, V., Li, G., & VicentePérez, J. (2015). Robust solutions to multiobjective linear programs with uncertain data. European Journal of Operational Research, 242, 730–743.
Goberna, M. A., & López, M. A. (1998). Linear semiinfinite optimization. Chichester: Wiley.
Goberna, M. A., & López, M. A. (2014). Postoptimal analysis in linear semiinfinite optimization. New York: Springer.
GonzálezGutiérrez, E., Rebollar, L. A., & Todorov, M. I. (2011a). Rate of convergence of a class of numerical methods solving linear inequality systems. Optimization, 60, 947–957.
GonzálezGutiérrez, E., Rebollar, L. A., & Todorov, M. I. (2011b). Under and over projection methods for solving linear inequality systems. Comptes Rendus de la Academie Bulgare des Sciences, 64, 785–790.
GonzálezGutiérrez, E., Rebollar, L. A., & Todorov, M. I. (2012). Relaxation methods for solving linear inequality systems: Converging results. Top, 20, 426–436.
GonzálezGutiérrez, E., & Todorov, M. I. (2012). A relaxation method for solving systems with infinitely many linear inequalities. Optimization Letters, 6, 291–298.
GonzálezGutiérrez, E., Todorov, M. I. (2014). Generalized step iteration in the relaxation method for the feasibility problem. IMPA, Rio de Janeiro, BR, Preprint serie D113/2014. https://institucional.impa.br/preprint/lista.action?serie=4
Horst, R., Pardalos, P., & Thoai, N. V. (2000). Introduction to global optimization (1st ed.). Dordrecht: Kluwer.
Hu, H. (1994). A Projection method for solving infinite systems of linear inequalities. In D.Z. Du & J. Sun (Eds.), Advances in optimization and approximation (pp. 186–194). Dordrecht: Kluwer.
Jeroslow, R. G. (1979). Some relaxation methods for linear inequalities. Cahiers du Cero, 21, 43–53.
Kelley, J. E., Jr. (1960). The cuttingplane method for solving convex programs. Journal of the Society for Industrial and Applied Mathematics, 8, 703–712.
Rubinov, A. M. (2000). Abstract convexity and global optimization. Dordrecht/Boston: Kluwer.
Acknowledgments
The authors are grateful to the referees for their constructive comments and helpful suggestions which have contributed to the final preparation of the paper.
Author information
Affiliations
Corresponding author
Additional information
M.I. Todorov: On leave from IMIBAS, Sofia, BG.
This research was partially supported by MICINN of Spain, Grant MTM201459179C21P and Sistema Nacional de Investigadores, Mexico.
Appendices
Appendix 1: Extended cutting angle method
The extended cutting angle method (ECAM in short) due to Beliakov solves very hard optimization problems of the form
where f is Lipschitz continuous and X is a polytope. For simplicity, we assume that \(\dim X=n\). Since any full dimensional polytope can be expressed as the finite union of nonoverlapping simplices, X will be a simplex in this appendix.
In ECAM the objective function is optimized by building a sequence of piecewise linear underestimates. ECAM is inspired in the classical cutting plane method by Kelley (1960) and Cheney and Goldstein (1959) to solve linearly constrained convex programs of the form (3), where X is the solution set of a given linear system and \(f\,{:}\,\mathbb {R}^{n}\rightarrow \mathbb {R}\) is convex. Since f is lower semicontinuous, it is the upper envelope of the set of all its affine minorants, i.e.
Indeed, it is enough to consider in (20) the affine functions of the form \(h(x)=f(z)+\left\langle u,xz\right\rangle \), where \(u\in \partial f\left( z\right) \), the graph of h being a hyperplane which supports the epigraph of f at \(\left( z,f(z)\right) \). Let \(x^{1},\ldots ,x^{k}\in X\) be given and consider the affine functions \(h^{j}(x)=f(x^{j})+\left\langle u^{j},xx^{j}\right\rangle \), for some \(u^{j}\in \partial f\left( x^{j}\right) ,\,j=1,\ldots ,k.\) The function
is a convex piecewise affine underestimate of the objective function f, in other words, a polyhedral convex minorant of f. The kth iteration of the cutting plane method consists of computing an optimal solution \(x^{k+1}\) of the approximating problem \(\inf \left\{ f_{k}(x)\,{:}\,x\in X\right\} \) which results of replacing f with \(f_{k}\) in (3) or, equivalently, solving the linear programming problem in \(\mathbb {R}^{n+1}\)
where \(x=\left( x_{1},\ldots ,x_{n}\right) \). Then the next underestimate of f,
is a more accurate approximation to f, and the method iterates.
The generalized cutting plane method for (3), where \(f\,{:}\,\mathbb {R}^{n}\rightarrow \mathbb {R}\) is now a nonconvex function while \(X=\left\{ x\in \mathbb {R}_{+}^{n}\,{:}\,\sum \nolimits _{i=1}^{n}x_{i}=1\right\} \) is the unit simplex, follows the same script, except that the underestimate \(f_{k}\) is built using the socalled Hsubgradients (see Rubinov 2000) instead of ordinary subgradients, so that minimizing \(f_{k}\) on S is no longer a convex problem. The cutting angle method (Bagirov and Rubinov 2000, 2001), of which ECAM is a variant, is an efficient numerical method for minimizing the underestimates when f belongs to certain class of abstract convex functions. Assume that f is Lipschitz continuous with Lipschitz constant \(M>0\) and take a scalar \(\gamma \ge M.\) Let \(x^{1},\ldots ,x^{k}\in S\) be given. For \(j=1,\ldots ,k,\) we define the support vector \(l^{j}\in \mathbb {R}^{n} \) by
and the support function \(h^{j}\) by
Since the functions \(h^{j}\) are concave piecewise affine underestimates of f (i.e. polyhedral concave minorants of f), the underestimate \(f_{k}\) defined in (21) is now a sawtooth underestimate of f and its minimization becomes a hard problem as (22) is no longer a linear program. ECAM locates the set \(V^{k}\) of all local minima of the function \(f_{k}\) which, after sorting, yields the set of global minima of \(f_{k}\) (see Beliakov (2005, 2008); Beliakov and Ferrer 2010 for additional information). A global minimum \(x^{k+1}\) of \(f_{k}\) is aggregated to the set \(\left\{ x^{1},\ldots ,x^{k}\right\} \) and the method iterates with \(f_{k+1}:=\max \left\{ f_{k},h^{k+1}\right\} \).
As shown in Beliakov (2003, 2005, 2008), a necessary and sufficient condition for a point \(x^{*}\in \hbox {ri}\,X\) to be a local minimizer of \(f_{k}\) given by Eq. (25), Eq. (21) is that there exist an index set \(J=\{k_{1},k_{2},\ldots ,k_{n+1}\}\), such that
and \(\forall i\in \{1,\ldots ,n+1\}\),
Let \(x^{*}\) be a local minimizer of \(f_{k}\), which corresponds to some index set J satisfying the above conditions. Form the ordered combination of the support vectors \(L=\{l^{k_{1}}, l^{k_{2}},\ldots , l^{k_{n+1}}\}\) that corresponds to J. It is helpful to represent this combination with a matrix L whose rows are the support vectors \(l^{k_{i}}\):
so that its components are given by \(L_{ij}=\frac{f(x^{k_{i})}}{\gamma }x_{j}^{k_{i}}\).
Let the support vectors \(l^{k},k=1,\ldots ,K\) be defined as in (24). Let \(x^{*}\) denote a local minimizer of \(f_{k}\) and \(d=f_{k}(x^{*})\). Then the matrix (26) corresponding to \(x^{*}\) enjoys the following properties (see Beliakov 2008):

(1)
\(\forall i,j \in \{1,\ldots ,n+1\}, i \ne j: l_{i}^{k_{j}}>l_{i}^{k_{i}}\),

(2)
\(\forall r \not \in \{k_{1},k_{2},\ldots ,k_{n+1} \} \; \exists i\in \{1,\ldots ,n+1\}: L_{ii}=l_{i}^{k_{i}} \ge l_{i}^{r}\),

(3)
\(d=\frac{\gamma }{n+1}\left( \hbox {Trace}\,(L)+1\right) \), and

(4)
\(x^{*}_{i}=\frac{d}{\gamma }l^{k_{i}}_{i}, i=1,\ldots ,n+1\).
Property 1 reads that the diagonal elements of the matrix L are dominated by their respective columns, and Property 2 reads that no support vector \(l^{r}\) (which is not part of L) strictly dominates the diagonal of L. The approach taken in Beliakov (2004, 2005) is to enumerate all combinations L with the Properties 1–2, which will give the positions of local minima \(x^{*}\) and their values d by using Properties 3–4.
From (23), combinations of Lmatrices can be built incrementally, by taking initially the first \({n+1}\) support vectors (which yields the unique combination \(L=\{l^{1},l^{2},\ldots ,l^{n+1}\}\)), and then adding one new support vector at a time. Suppose, we have already identified the local minima of \(f_{k}\), i.e., all the required combinations. When we add another support vector \(l^{k+1}\), we can inherit most of the local minima of \(f_{k+1}\) (a few will be lost since Property 2 may fail with \(l^{k+1}\) playing the role of \(l^{r}\)), and we only need to add a few new local minima, that are new combinations necessarily involving \(l^{k+1}\). These new combinations are simple modifications of those combinations because Property 2 fails with \(l^{r}=l^{k+1}\).
When ECAM is applied for solving the global optimization subproblem (4) at step r of ERA, the procedure finishes when \(f_{{ best}}d^{*}>\beta \) so, a \(\beta \)global optimal solution is obtained.
Remark 13
Notice that the transformation of variables

(1)
\(\bar{x}_{i}=x_{i}a_{i}, i=1,\dots ,n, d=\sum \nolimits _{i=1}^{n}(b_{i}a_{i})\) with \(\bar{x}_{i}\ge 0\) and \(\sum \nolimits _{i=1}^{n}\bar{x}_{i}\le d\),

(2)
\(z_{i}=\frac{\bar{x}_{i}}{d}, i=1,\dots ,n, z_{n+1}=\sum \nolimits _{i=1}^{n}z_{i},\)
allows us to replace the program
by the following one:
where S denotes the unit simplex in \(\mathbb {R}^{n+1}\).
Appendix 2: Performance profiles
In this paper we compare, on the one hand, 8 implementations of the classical fixed step relaxation algorithm corresponding to 8 choices of \(\lambda \) on a battery of 27 feasibility problems and, on the other hand, 5 implementations of the new relaxation algorithm with variable step size corresponding to 5 choices of \(\upsilon \) on the same set of test problems. Denote by \(\mathcal {S}\) the set of implementations to be compared, so that the cardinality of \(\mathcal {S}\), denoted by \(\hbox {size}\,\mathcal {S}\) is 8 and 5 for the classic and for the new relaxation algorithms, respectively. Denote also by \(\mathcal {P}\) the set of test feasibility problems, with \(\hbox {size}\,\mathcal {P}=27\) for both algorithms.
The notion of performance profile (Dolan and Moré 2002) allows us to compare the performance of the implementations from \(\mathcal {S}\) on \(\mathcal {P}\). For each pair \(({\normalsize p},{\normalsize s})\in \mathcal {P\times S}\) we define
Consider a fixed problem \({\normalsize p}\in \mathcal {P}\). The performance of a solver \({\normalsize s}\in \mathcal {S}\) able to solve \({\normalsize p}\) is compared with the best performance of any solver of \(\mathcal {S}\) on the same problem through the performance ratio
Obviously, \(r_{{\normalsize p},{\normalsize s}}=1\) means that s is a winner for p, as it is at least as good, for solving p, as any other solver of \(\mathcal {S}\). For any solver \({\normalsize s}\) unable to solve problem \({\normalsize p}\) we define \(r_{{\normalsize p},{\normalsize s}}=r_{M}\), where \(r_{M}\) denotes an arbitrary scalar such that
The evaluation of the overall performance of \({\normalsize s}\in \mathcal {S}\) is based on the stepwise nondecreasing function \(\rho _{{\normalsize s}}\,{:}\,\mathbb {R}_{+}\rightarrow [0,1],\) called performance profile of s, defined as follows:
Obviously, \(\rho _{{\normalsize s}}\left( t\right) =0\) for all \(t\in [0,1[\) and \(\rho _{{\normalsize s}}(1)\) is the relative frequency (which could be interpreted as a probability when p is taken at random from \(\mathcal {P}\)) of wins of solver s over the rest of the solvers. We say in brief that \(\rho _{{\normalsize s}}(1)\) is the probability of win for s.
Analogously, for \(t>1, \rho _{{\normalsize s}}(t)\) represents the probability for solver \({\normalsize s}\in \mathcal {S}\) that a performance ratio \(r_{{\normalsize p},{\normalsize s}}\) is within a factor \(t\in \mathbb {R}\) of the best possible ratio, so that \(\rho _{{\normalsize s}}\) can be interpreted as a distribution function and the number
as the probability of solving a problem of \(\mathcal {P}\) with \({\normalsize s}\in \mathcal {S}\).
Rights and permissions
About this article
Cite this article
Ferrer, A., Goberna, M.A., GonzálezGutiérrez, E. et al. A comparative note on the relaxation algorithms for the linear semiinfinite feasibility problem. Ann Oper Res 258, 587–612 (2017). https://doi.org/10.1007/s1047901621352
Published:
Issue Date:
Keywords
 Linear semiinfinite systems
 Feasibility problem
 Relaxation method
 Cutting angle method