Annals of Operations Research

, Volume 258, Issue 2, pp 587–612 | Cite as

A comparative note on the relaxation algorithms for the linear semi-infinite feasibility problem

  • A. Ferrer
  • M. A. Goberna
  • E. González-Gutiérrez
  • M. I. TodorovEmail author
S.I. : CLAIO 2014


The problem (LFP) of finding a feasible solution to a given linear semi-infinite system arises in different contexts. This paper provides an empirical comparative study of relaxation algorithms for (LFP). In this study we consider, together with the classical algorithm, implemented with different values of the fixed parameter (the step size), a new relaxation algorithm with random parameter which outperforms the classical one in most test problems whatever fixed parameter is taken. This new algorithm converges geometrically to a feasible solution under mild conditions. The relaxation algorithms under comparison have been implemented using the extended cutting angle method for solving the global optimization subproblems.


Linear semi-infinite systems Feasibility problem Relaxation method Cutting angle method 



The authors are grateful to the referees for their constructive comments and helpful suggestions which have contributed to the final preparation of the paper.


  1. Agmon, S. (1954). The relaxation method for linear inequalities. Canadian Journal of Mathematics, 6, 382–392.CrossRefGoogle Scholar
  2. Auslender, A., Ferrer, A., Goberna, M. A., & López, M. A. (2015). Comparative study of RPSALG algorithm for convex semi-infinite programming. Computational Optimization and Applications, 60, 59–87.CrossRefGoogle Scholar
  3. Bagirov, A. M., & Rubinov, A. M. (2000). Global minimization of increasing positively homogeneous functions over the unit simplex. Annals of Operations Research, 98, 171–187.CrossRefGoogle Scholar
  4. Bagirov, A. M., & Rubinov, A. M. (2001). Modified versions of the cutting angle method. In N. Hadjisavvas & P. M. Pardalos (Eds.), Advances in convex analysis and global optimization (pp. 245–268). Dordrecht: Kluwer.CrossRefGoogle Scholar
  5. Bartle, R. G. (1964). The elements of real analysis. New York: Wiley.Google Scholar
  6. Basu, A., De Loer, J. A., & Junod, M. (2013). On Chubanov’s method for linear programming. INFORMS Journal on Computing, 26, 336–350.CrossRefGoogle Scholar
  7. Beliakov, G. (2003). Geometry and combinatorics of the cutting angle method. Optimization, 52, 379–394.CrossRefGoogle Scholar
  8. Beliakov, G. (2004). Cutting angle method. A tool for constrained global optimization. Optimization Methods and Software, 19, 137–151.CrossRefGoogle Scholar
  9. Beliakov, G. (2005). A review of applications of the cutting angle method. In A. M. Rubinov & V. Jeyakumar (Eds.), Continuous Optimization (pp. 209–248). New York: Springer.CrossRefGoogle Scholar
  10. Beliakov, G. (2008). Extended cutting angle method of global optimization. Pacific Journal of Optimization, 4, 153–176.Google Scholar
  11. Beliakov, G., & Ferrer, A. (2010). Bounded lower subdifferentiability optimization techniques: Applications. Journal of Global Optimization, 47, 211–231.CrossRefGoogle Scholar
  12. Ben-Tal, A., El Ghaoui, L., & Nemirovski, A. (2009). Robust optimization. Princeton: Princeton University Press.CrossRefGoogle Scholar
  13. Ben-Tal, A., & Nemirovski, A. (1999). Robust solutions of uncertain linear programs. Operations Research Letters, 25(1), 1–13.CrossRefGoogle Scholar
  14. Betke, U. (2004). Relaxation, new combinatorial and polynomial algorithms for the linear feasibility problem. Discrete and Computational Geometry, 32, 317–338.CrossRefGoogle Scholar
  15. Borwein, J. M., & Tam, M. K. (2014). A cyclic Douglas–Rachford iteration scheme. Journal of Optimization Theory and Applications, 160, 1–29.CrossRefGoogle Scholar
  16. Cánovas, M. J., López, M. A., Parra, J., & Toledo, F. J. (2005). Distance to ill-posedness and the consistency value of linear semi-infinite inequality systems. Mathematical Programming, 103A, 95–126.CrossRefGoogle Scholar
  17. Cheney, E. W., & Goldstein, A. A. (1959). Newton method for convex programming and Tchebycheff approximation. Numerissche Mathematik, 1, 253–268.CrossRefGoogle Scholar
  18. Combettes, P. L. (1996). The convex feasibility problem in image recovery. In P. Hawkes (Ed.), Advances in imaging and electron physics (Vol. 95, pp. 155–270). New York: Academic Press.Google Scholar
  19. Dinh, N., Goberna, M. A., & López, M. A. (2006). From linear to convex systems: Consistency, Farkas Lemma and applications. Journla of Convex Analysis, 13, 279–290.Google Scholar
  20. Dolan, E. D., & Moré, J. J. (2002). Benchmarking optimization software with performance profiles. Mathematical Programming, 91, 201–213.CrossRefGoogle Scholar
  21. Eriksson, K., Estep, D., & Johnson, C. (2004). Applied mathematics: Body and soul. Berlin: Springer.CrossRefGoogle Scholar
  22. Ferrer, A., & Miranda, E. (2013). Random test examples with known minimum for convex semi-infinite programming problems. E-prints UPC. Accessed 28 February 2015.
  23. Goberna, M. A., Jeyakumar, V., Li, G., & Vicente-Pérez, J. (2014). Robust solutions of uncertain multi-objective linear semi-infinite programming. SIAM Journal on Optimization, 24, 1402–1419.CrossRefGoogle Scholar
  24. Goberna, M. A., Jeyakumar, V., Li, G., & Vicente-Pérez, J. (2015). Robust solutions to multi-objective linear programs with uncertain data. European Journal of Operational Research, 242, 730–743.CrossRefGoogle Scholar
  25. Goberna, M. A., & López, M. A. (1998). Linear semi-infinite optimization. Chichester: Wiley.Google Scholar
  26. Goberna, M. A., & López, M. A. (2014). Post-optimal analysis in linear semi-infinite optimization. New York: Springer.CrossRefGoogle Scholar
  27. González-Gutiérrez, E., Rebollar, L. A., & Todorov, M. I. (2011a). Rate of convergence of a class of numerical methods solving linear inequality systems. Optimization, 60, 947–957.CrossRefGoogle Scholar
  28. González-Gutiérrez, E., Rebollar, L. A., & Todorov, M. I. (2011b). Under and over projection methods for solving linear inequality systems. Comptes Rendus de la Academie Bulgare des Sciences, 64, 785–790.Google Scholar
  29. González-Gutiérrez, E., Rebollar, L. A., & Todorov, M. I. (2012). Relaxation methods for solving linear inequality systems: Converging results. Top, 20, 426–436.CrossRefGoogle Scholar
  30. González-Gutiérrez, E., & Todorov, M. I. (2012). A relaxation method for solving systems with infinitely many linear inequalities. Optimization Letters, 6, 291–298.CrossRefGoogle Scholar
  31. González-Gutiérrez, E., Todorov, M. I. (2014). Generalized step iteration in the relaxation method for the feasibility problem. IMPA, Rio de Janeiro, BR, Preprint serie D113/2014.
  32. Horst, R., Pardalos, P., & Thoai, N. V. (2000). Introduction to global optimization (1st ed.). Dordrecht: Kluwer.CrossRefGoogle Scholar
  33. Hu, H. (1994). A Projection method for solving infinite systems of linear inequalities. In D.-Z. Du & J. Sun (Eds.), Advances in optimization and approximation (pp. 186–194). Dordrecht: Kluwer.CrossRefGoogle Scholar
  34. Jeroslow, R. G. (1979). Some relaxation methods for linear inequalities. Cahiers du Cero, 21, 43–53.Google Scholar
  35. Kelley, J. E., Jr. (1960). The cutting-plane method for solving convex programs. Journal of the Society for Industrial and Applied Mathematics, 8, 703–712.CrossRefGoogle Scholar
  36. Rubinov, A. M. (2000). Abstract convexity and global optimization. Dordrecht/Boston: Kluwer.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  • A. Ferrer
    • 1
  • M. A. Goberna
    • 2
  • E. González-Gutiérrez
    • 3
  • M. I. Todorov
    • 4
    Email author
  1. 1.Departament de Matemàtica Aplicada IUniversitat Politècnica de CatalunyaBarcelonaSpain
  2. 2.Department of Statistics and Operations ResearchAlicante UniversityAlicanteSpain
  3. 3.School of EngineeringPolytechnic University of TulancingoHidalgoMexico
  4. 4.Department of Physics and MathematicsUDLAPPueblaMexico

Personalised recommendations