Aguarón, J., Escobar, M. T., & Moreno-Jiménez, J. M. (2014). The precise consistency consensus matrix in a local AHP-group decision making context. Annals of Operations Research, 1–15. doi:10.1007/s10479-014-1576-8.
Aguaron, J., & Moreno-Jimenez, J. M. (2003). The geometric consistency index: Approximated thresholds. European Journal of Operational Research, 147, 137–145. doi:10.1016/S0377-2217(02)00255-2.
Article
Google Scholar
Barzilai, J. (2005). Measurement and preference function modeling. International Transactions in Operational Research, 12, 173–183. doi:10.1111/j.1475-3995.2005.00496.x.
Article
Google Scholar
Basak, I. (1998). Comparison of statistical procedures in analytic hierarchy process using a ranking test. Mathematical and computer modelling, 28, 105–118. doi:10.1016/S0895-7177(98)00174-5.
Article
Google Scholar
Bana e Costa, C. A., & Vansnick, J. C. (2008). A critical analysis of the eigenvalue method used to derive priorities in AHP. European Journal of Operational Research, 187, 1422–1428. doi:10.1016/j.ejor.2006.09.022.
Article
Google Scholar
Bozóki, S., Dezső, L., Poesz, A., & Temesi, J. (2013). Analysis of pairwise comparison matrices: An empirical research. Annals of Operations Research, 211(1), 511–528. doi:10.1007/s10479-013-1328-1.
Article
Google Scholar
Bozóki, S., & Rapcsák, T. (2008). On Saaty’s and Koczkodaj’s inconsistencies of pairwise comparison matrices. Journal of Global Optimization, 42, 157–175. doi:10.1007/s10898-007-9236-z.
Article
Google Scholar
Brunelli, M., Canal, L., & Fedrizzi, M. (2013). Inconsistency indices for pairwise comparison matrices: A numerical study. Annals of Operations Research, 211(1), 493–509. doi:10.1007/s10479-013-1329-0.
Article
Google Scholar
Chen, K., Kou, G., Tarn, J. M., & Song, Y. (2015). Bridging the gap between missing and inconsistent values in eliciting preference from pairwise comparison matrices. Annals of Operations Research, 1–21. doi:10.1007/s10479-015-1997-z.
Choo, E. U., & Wedley, W. C. (2004). A common framework for deriving preference values from pairwise comparison matrices. Computers and Operations Research, 31, 893–908. doi:10.1016/S0305-0548(03)00042-X.
Article
Google Scholar
Crawford, G., & Williams, C. A. (1985). A note on the analysis of subjective judgment matrices. Journal of Mathematical Psychology, 29, 387–405. doi:10.1016/0022-2496(85)90002-1.
Article
Google Scholar
Dong, Y., Xu, Y., Li, H., & Dai, M. (2008). A comparative study of the numerical scales and the prioritization methods in AHP. European Journal of Operational Research, 186, 229–242. doi:10.1016/j.ejor.2007.01.044.
Article
Google Scholar
Farkas, A. (2007). The analysis of the principal eigenvector of pairwise comparison matrices. Acta Polytechnica Hungarica. 4(2). http://uni-obuda.hu/journal/Farkas_10.pdf.
Grzybowski, A. Z. (2012). Note on a new optimization based approach for estimating priority weights and related consistency index. Expert Systems with Applications, 39, 11699–11708. doi:10.1016/j.eswa.2012.04.051.
Article
Google Scholar
Hovanov, N. V., Kolari, J. W., & Sokolov, M. V. (2008). Deriving weights from general pairwise comparison matrices. Mathematical Social Sciences, 55, 205–220. doi:10.1016/j.mathsocsci.2007.07.006.
Article
Google Scholar
Kazibudzki, P. T., & Grzybowski, A. Z. (2013). On some advancements within certain multicriteria decision making support methodology. American Journal of Business and Management, 2(2), 143–154. doi:10.11634/216796061302287.
Article
Google Scholar
Kazibudzki, P. T. (2012). Note on some revelations in prioritization, theory of choice and decision making support methodology. African Journal of Business Management, 6(48), 11762–11770. doi:10.5897/AJBM12.899.
Article
Google Scholar
Koczkodaj, W. W. (1993). A new definition of consistency of pairwise comparisons. Mathematical and Computer Modeling, 18(7), 79–84. doi:10.1016/0895-7177(93)90059-8.
Article
Google Scholar
Lin, C. (2007). A revised framework for deriving preference values from pairwise comparison matrices. European Journal of Operational Research, 176, 1145–1150. doi:10.1016/j.ejor.2005.09.022.
Article
Google Scholar
Lin, C., Kou, G., & Ergu, D. (2013). An improved statistical approach for consistency test in AHP. Annals of Operations Research, 211(1), 289–299. doi:10.1007/s10479-013-1413-5.
Article
Google Scholar
Linares, P., Lumbreras, S., Santamaría, A., & Veiga, A. (2014). How relevant is the lack of reciprocity in pairwise comparisons? An experiment with AHP. Annals of Operations Research, (pp. 1–18). doi:10.1007/s10479-014-1767-3.
Lipovetsky, S., & Tishler, A. (1997). Interval estimation of priorities in the AHP. European Journal of Operational Research, 114, 153–164. doi:10.1016/S0377-2217(98)00012-5.
Article
Google Scholar
Moreno-Jiménez, J. M., Salvador, M., Gargallo, P., & Altuzarra, A. (2014). Systemic decision making in AHP: A Bayesian approach. Annals of Operations Research, (pp. 1–24). doi:10.1007/s10479-014-1637-z.
Pereira, V., & Costa, H. G. (2015). Nonlinear programming applied to the reduction of inconsistency in the AHP method. Annals of Operations Research, 229(1), 635–655. doi:10.1007/s10479-014-1750-z.
Article
Google Scholar
Saaty, T. L. (1980). The Analytic Hierarchy Process. New York: McGraw-Hill.
Google Scholar
Saaty, T. L. (1990). How to make a decision: The analytic hierarchy process. European Journal of Operational Research, 48, 9–26. doi:10.1016/0377-2217(90)90057-I.
Article
Google Scholar
Xu, Z. S. (2004). Goal programming models for obtaining the priority vector of incomplete fuzzy preference relation. International Journal of Approximate Reasoning, 36, 261–270. doi:10.1016/j.ijar.2003.10.011.
Article
Google Scholar