Skip to main content
Log in

Multi-period cardinality constrained portfolio selection models with interval coefficients

  • Original Paper
  • Published:
Annals of Operations Research Aims and scope Submit manuscript

Abstract

In this paper, we discuss a multi-period portfolio selection problem in emerging markets. To provide investors with more choices, we propose four multi-period cardinality constrained portfolio selection models with interval coefficients in both objective functions and constraints. The proposed models can be equivalently represented as the parameter programming problems with interval coefficients in constraints. We utilize the definition of the possibility degree for interval inequality to handle the interval inequality constraints in the proposed models and express investors’ different risk attitudes. Then, the proposed models are transformed into deterministic models. After that, we design a new dynamic differential evolution algorithm with self-adapting control parameter to solve the transformed deterministic models. Finally, we provide a numerical example to illustrate the applications of the proposed models and demonstrate the effectiveness of the designed algorithm.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Alefeld, G., & Herzberger, J. (1983). Introduction to interval computations. New York: Academic Press.

    Google Scholar 

  • Alia, M. M., & Törn, A. (2004). Population set-based global optimization algorithms: Some modifications and numerical studies. Computers and Operations Research, 31(10), 1703–1725.

    Article  Google Scholar 

  • Bhattacharyya, R., Kar, S., & Majumder, D. D. (2011). Fuzzy mean-variance-skewness portfolio selection models by interval analysis. Computers and Mathematics with Applications, 61(1), 126–137.

    Article  Google Scholar 

  • Bilbao-Terol, A., Pérez-Gladish, B., Arenas-Parra, M., & Rodrłguez-Uría, M. V. (2006). Fuzzy compromise programming for portfolio selection. Applied Mathematics and Computation, 173(1), 251–264.

    Article  Google Scholar 

  • Brest, J., Greiner, S., Boskovic, B., Mernik, M., & Zumer, V. (2006). Self-adapting control parameters in differential evolution: A comparative study on numerical benchmark problems. IEEE Transactions on Evolutionary Computation, 10(6), 646–657.

    Article  Google Scholar 

  • Calvo, C., Ivorra, C., & Liern, V. (2014). Fuzzy portfolio selection with non-financial goals: exploring the efficient frontier. Annals of Operations Research,. doi:10.1007/s10479-014-1561-2.

  • Chang, T. J., Meade, N., Beasley, J. E., & Sharaiha, Y. M. (2000). Heuristics for cardinality constrained portfolio optimisation. Computers and Operations Research, 27(13), 1271–1302.

    Article  Google Scholar 

  • Deb, K. (2000). An efficient constraint handling method for genetic algorithms. Computer Methods in Applied Mechanics and Engineering, 186(2/4), 311–338.

    Article  Google Scholar 

  • Fang, Y., Lai, K. K., & Wang, S. Y. (2008). Fuzzy portfolio optimization theory and methods, Lecture Notes in Economics and Mathematical Systems, vol. 609, Springer.

  • Fang, Y., Lai, K. K., & Wang, S. Y. (2006). Portfolio rebalancing model with transaction costs based on fuzzy decision theory. European Journal of Operational Research, 175(2), 879–893.

    Article  Google Scholar 

  • Fang, S. C., Rajasekera, J. R., & Tsao, H. S. J. (1997). Entropy Optimization and Mathematical programming. The Netherlands: Academic Publishers: Kluwer.

    Book  Google Scholar 

  • Giove, S., Funari, S., & Nardelli, C. (2006). An interval portfolio selection problem based on regret function. European Journal of Operational Research, 170(1), 253–264.

    Article  Google Scholar 

  • Gupta, P., Inuiguchi, M., Mehlawat, M. K., & Mittal, G. (2013). Multiobjective credibilistic portfolio selection model with fuzzy chance-constraints. Information Sciences, 229, 1–17.

    Article  Google Scholar 

  • Gupta, P., Mehlawat, M. K., & Saxena, A. (2008). Asset portfolio optimization using fuzzy mathematical programming. Information Sciences, 178(6), 1734–1755.

    Article  Google Scholar 

  • Huang, X. (2008). Mean-entropy models for fuzzy portfolio selection. IEEE Transactions on Fuzzy Systems, 16(4), 1096–1101.

    Article  Google Scholar 

  • Ida, M. (2003). Portfolio selection problem with interval coefficients. Applied Mathematics Letters, 16(5), 709–713.

    Article  Google Scholar 

  • Ida, M. (2004). Solutions for the portfolio selection problem with interval and fuzzy coefficients. Reliable Computing, 10(5), 389–400.

    Article  Google Scholar 

  • Inuiguchi, M., & Tanino, T. (2000). Portfolio selection under independent possibilistic information. Fuzzy Sets and Systems, 115(1), 83–92.

    Article  Google Scholar 

  • Ishibuchi, H., & Tanaka, H. (1990). Multiobjective programming in optimization of the interval objective function. European Journal of Operational Research, 48(2), 219–225.

    Article  Google Scholar 

  • Jiang, C., Han, X., Liu, G. R., & Liu, G. P. (2008). A nonlinear interval number programming method for uncertain optimization problems. European Journal of Operational Research, 188(1), 1–13.

    Article  Google Scholar 

  • Lai, K. K., Wang, S. Y., Xu, J. P., & Zhu, S. S. (2002). A class of linear interval programming problems and its application to portfolio selection. IEEE Transactions on Fuzzy Systems, 10(6), 689–704.

    Article  Google Scholar 

  • León, T., Liern, V., & Vercher, E. (2002). Viability of infeasible portfolio selection problems: A fuzzy approach. European Journal of Operational Research, 139(1), 178–189.

    Article  Google Scholar 

  • Li, X., Shou, B., & Qin, Z. (2012). An expected regret minimization portfolio selection model. European Journal of Operational Research, 218(2), 484–492.

    Article  Google Scholar 

  • Liu, S. T. (2011). The mean-absolute deviation portfolio selection problem with interval-valued returns. Journal of Computational and Applied Mathematics, 235(14), 4149–4157.

    Article  Google Scholar 

  • Liu, Y. J., Zhang, W. G., & Zhang, P. (2013). A multi-period portfolio selection optimization model by using interval analysis. Economic Modelling, 33, 113–119.

    Article  Google Scholar 

  • Liu, B. D., Zhao, R. Q., & Wang, G. (2003). Uncertain Programming with Applications. Beijing: Tsinghua University Press.

    Google Scholar 

  • Li, J., & Xu, J. (2007). A class of possibilistic portfolio selection model with interval coefficients and its application. Fuzzy Optimization and Decision Making, 6(2), 123–137.

    Article  Google Scholar 

  • Markowitz, H. (1987). Mean-variance analysis in portfolio choice and capital markets. New York: Basil Blackwell.

    Google Scholar 

  • Mezura-Montes, E., Miranda-Varela, M. E., & del Carmen Gómez-Ramón, R. (2010). Differential evolution in constrained numerical optimization: An empirical study. Information Sciences, 180(22), 4223–4262.

    Article  Google Scholar 

  • Mishra, S. K., Panda, G., & Majhi, R. (2014). A comparative performance assessment of a set of multiobjective algorithms for constrained portfolio assets selection. Swarm and Evolutionary Computation, 16, 38–51.

    Article  Google Scholar 

  • Mohamed, A. W., & Sabry, H. Z. (2012). Constrained optimization based on modified differential evolution algorithm. Information Sciences, 194, 171–208.

    Article  Google Scholar 

  • Moore, R. E. (1966). Interval analysis. Englewood Cliffs, New Jersey: Prentice-Hall.

    Google Scholar 

  • Parra, M. A., Terol, A. B., & Uíıa, M. V. R. (2001). A fuzzy goal programming approach to portfolio selection. European Journal of Operational Research, 133(2), 287–297.

    Article  Google Scholar 

  • Storn, R., & Price, K. (1995). Differential evolution-a simple and efficient adaptive scheme for global optimization over continuous spaces. Berkley: International Computer Science Institute.

    Google Scholar 

  • Storn, R., & Price, K. (1997). Differential evolution-a simple and efficient heuristic for global optimization over continuous spaces. Journal of Global Optimization, 11(4), 341–359.

    Article  Google Scholar 

  • Tanaka, H., Guo, P., & Türksen, I. B. (2000). Portfolio selection based on fuzzy probabilities and possibility distributions. Fuzzy Sets and Systems, 111(3), 387–397.

    Article  Google Scholar 

  • Tiryaki, F., & Ahlatcioglu, B. (2009). Fuzzy portfolio selection using fuzzy analytic hierarchy process. Information Sciences, 179(1/2), 53–69.

    Article  Google Scholar 

  • Vercher, E., Bermúdez, J. D., & Segura, J. V. (2007). Fuzzy portfolio optimization under downside risk measures. Fuzzy Sets and Systems, 158(7), 769–782.

    Article  Google Scholar 

  • Wang, L., & Li, L. (2010). An effective differential evolution with level comparison for constrained engineering design. Structural Multidisciplinary Optimization, 41(6), 947–963.

    Article  Google Scholar 

  • Wang, S., & Zhu, S. (2002). On fuzzy portfolio selection problems. Fuzzy Optimization and Decision Making, 1(4), 361–377.

    Article  Google Scholar 

  • Watada, J. (1997). Fuzzy portfolio selection and its applications to decision making. Tatra Mountains Mathematical Publication, 13, 219–248.

    Google Scholar 

  • Wu, M., Kong, D., Xu, J., & Huang, N. (2013). On interval portfolio selection problem. Fuzzy Optimization and Decision Making, 12(3), 289–304.

    Article  Google Scholar 

  • Zadeh, L. A. (1965). Fuzzy sets. Information and Control, 8(3), 338–353.

    Article  Google Scholar 

  • Zhang, W. G., Wang, Y. L., Chen, Z. P., & Nie, Z. K. (2007). Possibilistic mean-variance models and efficient frontiers for portfolio selection problem. Information Sciences, 177(13), 2787–2801.

    Article  Google Scholar 

  • Zhang, W. G., Zhang, X., & Chen, Y. (2011). Portfolio adjusting optimization with added assets and transaction costs based on credibility measures. Insurance: Mathematics and Economics, 49(3), 353–360.

    Google Scholar 

  • Zhang, W. G., Zhang, X. L., & Xiao, W. L. (2009). Portfolio selection under possibilistic mean-variance utility and a SMO algorithm. European Journal of Operational Research, 197(2), 693–700.

    Article  Google Scholar 

Download references

Acknowledgments

This research was supported by the National Natural Science Foundation of China (No. 71501076), the Natural Science Foundation of Guangdong Province of China (No. 2014A030310454), the Fundamental Research Funds for the Central Universities (2015ZM084, 2014ZP0005) and Guangzhou Financial Services Innovation and Risk Management Research Base.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yong-Jun Liu or Wei-Guo Zhang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, YJ., Zhang, WG. & Wang, JB. Multi-period cardinality constrained portfolio selection models with interval coefficients. Ann Oper Res 244, 545–569 (2016). https://doi.org/10.1007/s10479-016-2117-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10479-016-2117-4

Keywords

Navigation