Skip to main content
Log in

Exact and heuristic approaches for the cycle hub location problem

  • Published:
Annals of Operations Research Aims and scope Submit manuscript

Abstract

In this paper, we present solution algorithms for the cycle hub location problem (CHLP), which seeks to locate p hub facilities that are connected by means of a cycle, and to assign non-hub nodes to hubs so as to minimize the total cost of routing flows through the network. This problem is useful in modeling applications in transportation and telecommunications systems, where large setup costs on the links and reliability requirements make cycle topologies a prominent network architecture. We present a branch-and-cut algorithm that uses a flow-based formulation and two families of mixed-dicut inequalities as a lower bounding procedure at nodes of the enumeration tree. We also introduce a metaheuristic based on greedy randomized adaptive search procedure to obtain initial upper bounds for the exact algorithm and to obtain feasible solutions for large-scale instances of the CHLP. Numerical results on a set of benchmark instances with up to 100 nodes and 8 hubs confirm the efficiency of the proposed solution algorithms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Alumur, S., & Kara, B. Y. (2008). Network hub location problems: The state of the art. European Journal of Operational Research, 190(1), 1–21.

    Article  Google Scholar 

  • Alumur, S., Nickel, S., Saldana da Gama, F., & Secerdin, Y. (2015). Multi-period hub network design problems with modular capacities. Annals of Operations Research,. doi:10.1007/s10479-015-1805-9.

    Google Scholar 

  • Alumur, S. A., Kara, B. Y., & Karasan, O. E. (2009). The design of single allocation incomplete hub networks. Transportation Research Part B: Methodological, 43(10), 936–951.

    Article  Google Scholar 

  • Baldacci, R., Dell’Amico, M., & González, J. S. (2007). The capacitated m-ring-star problem. Operations Research, 55(6), 1147–1162.

    Article  Google Scholar 

  • Brimberg, J., & Mladenovic, N. (1996). A variable neighbourhood algorithm for solving the continuous location-allocation problem. Studies in Locational Analysis, 10, 1–12.

    Google Scholar 

  • Calık, H., Alumur, S. A., Kara, B. Y., & Karasan, O. E. (2009). A tabu-search based heuristic for the hub covering problem over incomplete hub networks. Computers & Operations Research, 36(12), 3088–3096.

    Article  Google Scholar 

  • Campbell, J. F., & O’Kelly, M. E. (2012). 25 years of hub location research. Transportation Science, 46(2), 153–169.

    Article  Google Scholar 

  • Campbell, J. F., Ernst, A., & Krishnamoorthy, M. (2005a). Hub arc location problems: Part I: Introduction and results. Management Science, 51(10), 1540–1555.

    Article  Google Scholar 

  • Campbell, J. F., Ernst, A., & Krishnamoorthy, M. (2005b). Hub arc location problems: Part II: Formulations and optimal algorithms. Management Science, 51(10), 1556–1571.

    Article  Google Scholar 

  • Cetiner, S., Sepil, C., & Sural, H. (2010). Hubbing and routing in postal delivery systems. Annals of Operations Research, 181, 109–124.

    Article  Google Scholar 

  • Contreras, I. (2015). Hub location problems. In G. Laporte, F. Saldanha da Gama, & S. Nickel (Eds.), Location science (pp. 311–344). New York: Springer.

    Google Scholar 

  • Contreras, I., & Fernández, E. (2012). General network design: A unified view of combined location and network design problems. European Journal of Operational Research, 219(3), 680–697.

    Article  Google Scholar 

  • Contreras, I., & Fernández, E. (2014). Hub location as the minimization of a supermodular set function. Operations Research, 62, 557–570.

    Article  Google Scholar 

  • Contreras, I., Fernández, E., & Marín, A. (2009). Tight bounds from a path based formulation for the tree of hub location problem. Computers & Operations Research, 36(12), 3117–3127.

    Article  Google Scholar 

  • Contreras, I., Fernández, E., & Marín, A. (2010). The tree of hubs location problem. European Journal of Operational Research, 202(2), 390–400.

    Article  Google Scholar 

  • Contreras, I., Cordeau, J. F., & Laporte, G. (2011). Benders decomposition for large-scale uncapacitated hub location. Operations Research, 59(6), 1477–1490.

    Article  Google Scholar 

  • Cook, W., Cunningham, W., Pulleybank, W., & Schrijver, A. (1998). Combinatorial Optimization. Hoboken: Wiley.

    Google Scholar 

  • Current, J. R., & Schilling, D. A. (1994). The median tour and maximal covering tour problems: Formulations and heuristics. European Journal of Operational Research, 73(1), 114–126.

    Article  Google Scholar 

  • Ernst, A. T., & Krishnamoorthy, M. (1998a). Exact and heuristic algorithms for the uncapacitated multiple allocation p-hub median problem. European Journal of Operational Research, 104(1), 100–112.

    Article  Google Scholar 

  • Ernst, A. T., & Krishnamoorthy, M. (1998b). An exact solution approach based on shortest-paths for p-hub median problems. INFORMS Journal on Computing, 10(2), 149–162.

    Article  Google Scholar 

  • Festa, P., & Resende, M. (2011). GRASP: Basic components and enhancements. Telecommunication Systems, 46(3), 253–271.

    Article  Google Scholar 

  • Gendreau, M., Laporte, G., & Semet, F. (1997). The covering tour problem. Operations Research, 45(4), 568–576.

    Article  Google Scholar 

  • Hamacher, H. W., Labbé, M., Nickel, S., & Sonneborn, T. (2004). Adapting polyhedral properties from facility to hub location problems. Discrete Applied Mathematics, 145(1), 104–116.

    Article  Google Scholar 

  • Iyigun, C. (2013). The planar hub location problem: A probabilistic clustering approach. Annals of Operations Research, 211, 193–207.

    Article  Google Scholar 

  • Kim, J. G., & Tcha, D. W. (1992). Optimal design of a two-level hierarchical network with tree-star configuration. Computers & Industrial Engineering, 22(3), 273–281.

    Article  Google Scholar 

  • Klincewicz, J. (1998). Hub location in backbone/tributary network design: A review. Location Science, 6(1), 307–335.

    Article  Google Scholar 

  • Labbé, M., & Yaman, H. (2004). Projecting the flow variables for hub location problems. Networks, 44(2), 84–93.

    Article  Google Scholar 

  • Labbé, M., & Yaman, H. (2008). Solving the hub location problem in a star-star network. Networks, 51(1), 19–33.

    Article  Google Scholar 

  • Labbé, M., Laporte, G., Rodríguez Martín, I., & Salazar-González, J. J. (2004). The ring star problem: Polyhedral analysis and exact algorithm. Networks, 43(3), 177–189.

    Article  Google Scholar 

  • Labbé, M., Laporte, G., Rodríguez Martín, I., & Salazar-González, J. J. (2005a). Locating median cycles in networks. European Journal of Operational Research, 160(2), 457–470.

    Article  Google Scholar 

  • Labbé, M., Yaman, H., & Gourdin, E. (2005b). A branch and cut algorithm for hub location problems with single assignment. Mathematical programming, 102(2), 371–405.

    Article  Google Scholar 

  • Lee, Y., Lu, L., Qiu, Y., & Glover, F. (1993). Strong formulations and cutting planes for designing digital data service networks. Telecommunication Systems, 2(1), 261–274.

    Article  Google Scholar 

  • Lee, Y., Lim, B. H., & Park, J. S. (1996). A hub location problem in designing digital data service networks: Lagrangian relaxation approach. Location Science, 4(3), 185–194.

    Article  Google Scholar 

  • Lee, Y., Chiu, S., & Sanchez, J. (1998). A branch and cut algorithm for the steiner ring star problem. International Journal of Management Science, 4(1), 21–34.

    Google Scholar 

  • Liefooghe, A., Jourdan, L., & Talbi, E. G. (2010). Metaheuristics and cooperative approaches for the bi-objective ring star problem. Computers & Operations Research, 37(6), 1033–1044.

    Article  Google Scholar 

  • O’Kelly, M. E. (1986). The location of interacting hub facilities. Transportation Science, 20(2), 92–106.

    Article  Google Scholar 

  • O’Kelly, M. E., & Miller, H. J. (1994). The hub network design problem: A review and synthesis. Journal of Transport Geography, 2(1), 31–40.

    Article  Google Scholar 

  • Ortega, F., & Wolsey, L. A. (2003). A branch-and-cut algorithm for the single-commodity, uncapacitated, fixed-charge network flow problem. Networks, 41(3), 143–158.

    Article  Google Scholar 

  • Ortiz-Astorquiza, C., Contreras, I., & Laporte, G. (2015). The minimum flow cost Hamiltonian cycle problem: A comparison of formulations. Discrete Applied Mathematics, 187, 140–154.

    Article  Google Scholar 

  • Martins de Sá, E., de Camargo, R., & de Miranda, G. (2013). An improved Benders decomposition algorithm for the tree of hubs location problem. European Journal of Operational Research, 226, 185–202.

    Article  Google Scholar 

  • Martins de Sá, E., Contreras, I., & Cordeau, J. F. (2015a). Exact and heuristic algorithms for the design of hub networks with multiple lines. European Journal of Operational Research, 246(1), 186–198.

    Article  Google Scholar 

  • Martins de Sá, E., Contreras, I., Cordeau, J. F., de Camargo, R. S., & de Miranda, G. (2015b). The hub line location problem. Transportation Science, 49(3), 500–518.

    Article  Google Scholar 

  • Xu, J., Chiu, S. Y., & Glover, F. (1999). Optimizing a ring-based private line telecommunication network using tabu search. Management Science, 45(3), 330–345.

    Article  Google Scholar 

  • Yaman, H. (2008). Star p-hub median problem with modular arc capacities. Computers & Operations Research, 35(9), 3009–3019.

    Article  Google Scholar 

  • Yaman, H. (2009). The hierarchical hub median problem with single assignment. Transportation Research Part B: Methodological, 43(6), 643–658.

    Article  Google Scholar 

  • Yaman, H., & Elloumi, S. (2012). Star p-hub center problem and star p-hub median problem with bounded path lengths. Computers & Operations Research, 39(11), 2725–2732.

    Article  Google Scholar 

  • Zanjirani Farahani, R., Hekmatfar, M., Arabani, A. B., & Nikbakhsh, E. (2013). Hub location problems: A review of models, classification, solution techniques, and applications. Computers & Industrial Engineering, 64(4), 1096–1109.

    Article  Google Scholar 

Download references

Acknowledgments

This research was partly founded by the Canadian Natural Sciences and Engineering Research Council under grants 418609-2012 and 386501-2010. This support is gratefully acknowledged. Thanks are due to two referees for their valuable comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ivan Contreras.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Contreras, I., Tanash, M. & Vidyarthi, N. Exact and heuristic approaches for the cycle hub location problem. Ann Oper Res 258, 655–677 (2017). https://doi.org/10.1007/s10479-015-2091-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10479-015-2091-2

Keywords

Navigation