Annals of Operations Research

, Volume 242, Issue 1, pp 133–160 | Cite as

Fast machine reassignment

  • Franck Butelle
  • Laurent Alfandari
  • Camille Coti
  • Lucian Finta
  • Lucas Létocart
  • Gérard Plateau
  • Frédéric Roupin
  • Antoine Rozenknop
  • Roberto Wolfler Calvo


This paper proposes a new method for solving the Machine Reassignment Problem in a very short computational time. The problem has been proposed by Google as subject of the Challenge ROADEF/EURO 2012. The Machine Reassignment Problem consists in looking for a reassignment of processes to machines in order to minimize a complex objective function, subject to a rich set of constraints including multidimensional resource, conflict and dependency constraints. In this study, a cooperative search approach is presented for machine reassignment. This approach uses two components: Adaptive Variable Neighbourhood Search and Simulated Annealing based Hyper-Heuristic, running in parallel on two threads and exchanging solutions. Both algorithms employ a rich set of heuristics and a learning mechanism to select the best neighborhood/move type during the search process. The cooperation mechanism acts as a multiple restart which gets triggered whenever a new better solution is achieved by a thread and then shared with the other thread. Computational results on the Challenge instances as well as instances of a Generalized Assignment-like problem are given to show the relevance of the chosen methods and the high benefits of cooperation.


Generalized Assignment Adaptive Variable Neighborhood Search Simulated Annealing Hyper-Heuristic  Cooperative Parallel Search 



The authors wish to thank the two anonymous reviewers for fruitful suggestions which help improve a previous version of this paper.


  1. Bai, R., Blazewicz, J., Burke, E. K., Kendall, G., & McCollum, B. (2012). A simulated annealing hyper-heuristic methodology for flexible decision support. 4OR: A Quarterly Journal of Operations Research, 10(1), 43–66.CrossRefGoogle Scholar
  2. Bai, R., & Kendall, G. (2005). An investigation of automated planograms using a simulated annealing based hyper-heuristic. In T. Ibaraki, K. Nonobe & M. Yagiura (Eds.), Metaheuristics: Progress as real problem solvers (pp. 87–108). New York: Springer.Google Scholar
  3. Bilgin, B., Özcan, E., & Korkmaz, E. E. (2006). An experimental study on hyper-heuristics and exam timetabling. In Practice and theory of automated timetabling VI, 6th international conference, PATAT, Brno, Czech Republic, Revised selected papers (pp. 394–412). doi: 10.1007/978-3-540-77345-0_25.
  4. Burke, E. K., Gendreau, M., Hyde, M., Kendall, G., Ochoa, G., Özcan, E., et al. (2013). Hyper-heuristics: A survey of the state of the art. Journal of the Operational Research Society, 64(12), 1695–1724.CrossRefGoogle Scholar
  5. Burke, E. K., Hyde, M., Kendall, G., Ochoa, G., Özcan, E., & Woodward, J. R. (2010). A classification of hyper-heuristic approaches. In M. Gendreau & J. -Y. Potvin (Eds.), Handbook of metaheuristics (pp. 449–468). New York: Springer.Google Scholar
  6. Burke, E. K., Kendall, G., Misir, M., & Özcan, E. (2012). Monte carlo hyper-heuristics for examination timetabling. Annals of Operations Research, 196(1), 73–90.CrossRefGoogle Scholar
  7. Caprara, A., & Toth, P. (2001). Lower bounds and algorithms for the 2-dimensional vector packing problem. Discrete Applied Mathematics, 111(3), 231–262.CrossRefGoogle Scholar
  8. Cattrysse, D. G., & Van Wassenhove, L. N. (1992). A survey of algorithms for the generalized assignment problem. European Journal of Operational Research, 60(3), 260–272.CrossRefGoogle Scholar
  9. Chen, Y., Das, A., Qin, W., Sivasubramaniam, A., Wang, Q., & Gautam, N. (2005). Managing server energy and operational costs in hosting centers. In Proceedings of the ACM international conference on measurement and modeling of computer systems (SIGMETRICS) (pp. 303–314). doi: 10.1145/1064212.1064253.
  10. Chung, F. R., Garey, M. R., & Johnson, D. S. (1982). On packing two-dimensional bins. SIAM Journal on Algebraic Discrete Methods, 3(1), 66–76. doi: 10.1137/0603007.CrossRefGoogle Scholar
  11. Cowling, P., Kendall, G., & Soubeiga, E. (2001). A hyperheuristic approach to scheduling a sales summit. In E. K. Burke & W. Erben (Eds.), Practice and theory of automated timetabling III (pp. 176–190). New York: Springer.Google Scholar
  12. Crainic, T. G., & Gendreau, M. (2002). Cooperative parallel tabu search for capacitated network design. Journal of Heuristics, 8(6), 601–627.CrossRefGoogle Scholar
  13. Crainic, T. G., Gendreau, M., Hansen, P., & Mladenović, N. (2004). Cooperative parallel variable neighborhood search for the p-median. Journal of Heuristics, 10(3), 293–314.CrossRefGoogle Scholar
  14. Dowsland, K. A., Soubeiga, E., & Burke, E. K. (2007). A simulated annealing based hyperheuristic for determining shipper sizes for storage and transportation. European Journal of Operational Research, 179(3), 759–774. doi: 10.1016/j.ejor.2005.03.058.CrossRefGoogle Scholar
  15. Gavish, B., & Pirkul, H. (1991). Algorithms for the multi-resource generalized assignment problem. Management Science, 37(6), 695–713. doi: 10.1287/mnsc.37.6.695.CrossRefGoogle Scholar
  16. Han, B. T., Diehr, G., & Cook, J. S. (1994). Multiple-type, two-dimensional bin packing problems: Applications and algorithms. Annals of Operations Research, 50(1), 239–261. doi: 10.1007/BF02085642.CrossRefGoogle Scholar
  17. Hochbaum, D. S. (1996). Approximation algorithms for NP-hard problems. Boston, MA: PWS Publishing.Google Scholar
  18. James, T., Rego, C., & Glover, F. (2009). A cooperative parallel tabu search algorithm for the quadratic assignment problem. European Journal of Operational Research, 195(3), 810–826.CrossRefGoogle Scholar
  19. Kalender, M., Kheiri, A., Özcan, E., & Burke, E. K. (2013). A greedy gradient-simulated annealing hyper-heuristic. Soft Computing, 17(12), 2279–2292.CrossRefGoogle Scholar
  20. Kellerer, H., Pferschy, U., & Pisinger, D. (2004). Knapsack problems. New York: Springer.CrossRefGoogle Scholar
  21. Kirkpatrick, S., Gelatt, C. D., & Vecchi, M. P. (1983). Optimization by simulated annealing. Science, 220(4598), 671–680.CrossRefGoogle Scholar
  22. Le Bouthillier, A., & Crainic, T. G. (2005). A cooperative parallel meta-heuristic for the vehicle routing problem with time windows. Computers & Operations Research, 32(7), 1685–1708. doi: 10.1016/j.cor.2003.11.023.CrossRefGoogle Scholar
  23. Lehre, P., & Özcan, E. (2013). A runtime analysis of simple hyper-heuristics: To mix or not to mix operators. In Proceedings of the 12th ACM workshop on foundations of genetic algorithms (pp. 97–104).Google Scholar
  24. Lodi, A., Martello, S., & Monaci, M. (2002). Two-dimensional packing problems: A survey. European Journal of Operational Research, 141(2), 241–252. doi: 10.1016/S0377-2217(02)00123-6.CrossRefGoogle Scholar
  25. Martello, S., Pisinger, D., & Vigo, D. (2000). The three-dimensional bin packing problem. Operations Research, 48(2), 256–267. doi: 10.1287/opre. Scholar
  26. Maruyama, K., Chang, S., & Tang, D. (1977). A general packing algorithm for multidimensional resource requirements. International Journal of Computer & Information Sciences, 6(2), 131–149. doi: 10.1007/BF00999302.CrossRefGoogle Scholar
  27. Miyazawa, F. K., & Wakabayashi, Y. (2007). Two- and three-dimensional parametric packing. Computers and Operations Research, 34, 2589–2603. doi: 10.1016/j.cor.2005.10.001.CrossRefGoogle Scholar
  28. Nonobe, K., & Ibaraki, T. (2001). An improved tabu search method for the weighted constraint satisfaction problem. INFOR: Information Systems and Operational Research, 39, 131–151.Google Scholar
  29. Ouelhadj, D., & Petrovic, S. (2008). A cooperative distributed hyper-heuristic framework for scheduling. In IEEE international conference on systems, man and cybernetics (SMC) (pp. 2560–2565). IEEE.Google Scholar
  30. Pentico, D. W. (2007). Assignment problems: A golden anniversary survey. European Journal of Operational Research, 176(2), 774–793. doi: 10.1016/j.ejor.2005.09.014.CrossRefGoogle Scholar
  31. Pisinger, D., & Ropke, S. (2007). A general heuristic for vehicle routing problems. Computers & Operations Research, 34(8), 2403–2435.CrossRefGoogle Scholar
  32. Puchinger, J., & Raidl, G. R. (2007). Models and algorithms for three-stage two-dimensional bin packing. European Journal of Operational Research, 183(3), 1304–1327. doi: 10.1016/j.ejor.2005.11.064.CrossRefGoogle Scholar
  33. Rattadilok, P., Gaw, A., & Kwan, R. (2005). Distributed choice function hyper-heuristics for timetabling and scheduling. In E. Burke & M. Trick (Eds.), Practice and theory of automated timetabling V, Lecture notes in computer science (Vol. 3616, pp. 51–67). Berlin, Heidelberg: Springer. doi: 10.1007/11593577_4.
  34. Romeijn, H. E., & Morales, D. R. (2000). A class of greedy algorithms for the generalized assignment problem. Discrete Applied Mathematics, 103(13), 209–235. doi: 10.1016/S0166-218X(99)00224-3.CrossRefGoogle Scholar
  35. Ropke, S., & Pisinger, D. (2006). An adaptive large neighborhood search heuristic for the pickup and delivery problem with time windows. Transportation Science, 40(4), 455–472. doi: 10.1287/trsc.1050.0135.CrossRefGoogle Scholar
  36. Spieksma, F. C. R. (1994). A branch-and-bound algorithm for the two-dimensional vector packing problem. Computers & Operations Research, 21(1), 19–25. doi: 10.1016/0305-0548(94)90059-0.CrossRefGoogle Scholar
  37. Vazirani, V. V. (2001). Approximation algorithms. New York: Springer.Google Scholar
  38. Wood, T., Shenoy, P. J., Venkataramani, A., & Yousif, M. S. (2007). Black-box and gray-box strategies for virtual machine migration. In Proceedings of the 4th USENIX conference on Networked systems design and implementation (NSDI’07) (Vol. 7, pp. 229–242).Google Scholar
  39. Yagiura, M., Ibaraki, T., & Glover, F. (2004a). An ejection chain approach for the generalized assignment problem. INFORMS Journal on Computing, 16(2), 133–151. doi: 10.1287/ijoc.1030.0036.CrossRefGoogle Scholar
  40. Yagiura, M., Ibaraki, T., & Glover, F. (2006). A path relinking approach with ejection chains for the generalized assignment problem. European Journal of Operational Research, 169(2), 548–569. doi: 10.1016/j.ejor.2004.08.015.CrossRefGoogle Scholar
  41. Yagiura, M., Iwasaki, S., Ibaraki, T., & Glover, F. (2004). A very large-scale neighborhood search algorithm for the multi-resource generalized assignment problem. Discrete Optimization, 1, 87–98. doi: 10.1016/j.disopt.2004.03.005.CrossRefGoogle Scholar
  42. Yagiura, M., Yamaguchi, T., & Ibaraki, T. (1998). A variable depth search algorithm with branching search for the generalized assignment problem. Optimization Methods and Software, 10, 419–441. doi: 10.1080/10556789808805722.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  • Franck Butelle
    • 1
  • Laurent Alfandari
    • 1
    • 2
  • Camille Coti
    • 1
  • Lucian Finta
    • 1
  • Lucas Létocart
    • 1
  • Gérard Plateau
    • 1
  • Frédéric Roupin
    • 1
  • Antoine Rozenknop
    • 1
  • Roberto Wolfler Calvo
    • 1
  1. 1.LIPN, CNRS UMR 7030Université Paris 13, Sorbonne Paris CitéVilletaneuseFrance
  2. 2.ESSEC Business SchoolCergyFrance

Personalised recommendations