Annals of Operations Research

, Volume 262, Issue 2, pp 307–333 | Cite as

Evolutionary-based return forecasting with nonlinear STAR models: evidence from the Eurozone peripheral stock markets

  • Christos Avdoulas
  • Stelios BekirosEmail author
  • Sabri Boubaker
S.I.: Financial Economics


Traditional linear regression and time-series models often fail to produce accurate forecasts due to inherent nonlinearities and structural instabilities, which characterize financial markets and challenge the Efficient Market Hypothesis. Machine learning techniques are becoming widespread tools for return forecasting as they are capable of dealing efficiently with nonlinear modeling. An evolutionary programming approach based on genetic algorithms is introduced in order to estimate and fine-tune the parameters of the STAR-class models, as opposed to conventional techniques. Using a hybrid method we employ trading rules that generate excess returns for the Eurozone southern periphery stock markets, over a long out-of-sample period after the introduction of the Euro common currency. Our results may have important implications for market efficiency and predictability. Investment or trading strategies based on the proposed approach may allow market agents to earn higher returns.


Stock markets Return forecasting STAR models  Genetic algorithms 

JEL Classification

C32 C58 G10 G17 


  1. Abiyev, R. H., & Abiyev, V. H. (2012). Differential evaluation learning of fuzzy wavelet neural networks for stock price prediction. Journal Information Computational Science, 7(2), 21–130.Google Scholar
  2. Arumugam, M. S., & Rao, M. V. C. (2008). On the improved performances of the partical swarm optimization algorithms with adaptive parameters, cross-over operators and root mean square (RMS) variants for computing optimal control of a class of hybrid systems. Applied Soft Computing, 8, 324–336.CrossRefGoogle Scholar
  3. Austin, M., Bates, G., Dempster, M., & Williams, S. (2004). Adaptive systems for foreign exchange trading. Eclectic, 18, 21–26.Google Scholar
  4. Bäck, T. (1996). Evolutionary Algorithms in Theory and Practice. Oxford: Oxford University Press.Google Scholar
  5. Bacon, D. W., & Watts, D. G. (1971). Estimating the transition between two intersecting straight lines. Biometrika, 58, 525–534.Google Scholar
  6. Balke, N., & Fomby, T. (1994). Large shocks, small shocks, and economic fluctuations: Outliers in macroeconomic time series. Journal of Applied Econometrics, 9, 181–200.CrossRefGoogle Scholar
  7. Balvers, R. J., Cosimano, T. F., & McDonald, B. (1990). Predicting stock returns in an efficient market. Journal of Finance, 45, 1109–1128.CrossRefGoogle Scholar
  8. Bekiros, S. (2009). A Robust algorithm for parameter estimation in Smooth Transition Autoregressive models. Economics Letters, 103, 36–38.CrossRefGoogle Scholar
  9. Beller, K., & Nofsinger, J. R. (1998). On stock return seasonality and conditional heteroskedasticity. The Journal of Financial Research, 21, 229–246.CrossRefGoogle Scholar
  10. Bernhardt, D., Campello, D., & Kutsoati, E. (2006). Who herds. Journal of Financial Economics, 80, 657–676.CrossRefGoogle Scholar
  11. Bollerslev, T., & Ghysels, E. (1996). Periodic autoregressive conditional heteroskedasticity. Journal of Business and Economic Statistics, 14, 139–152.Google Scholar
  12. Bradleya, M. D., & Jansen, D. W. (2004). Forecasting with a nonlinear dynamic model of stock returns and industrial production. International Journal of Forecasting, 20(2), 321–342.CrossRefGoogle Scholar
  13. Breen, W., Glosten, L. R., & Jagannathan, R. (1990). Predictable variations in stock index returns. Journal of Finance, 44, 1177–1189.CrossRefGoogle Scholar
  14. Brock, W. A., Dechert, D., & Scheinkman, J. (1987). A test for independence based on the correlation dimension’. University of Wisconsin-Madison, Social Science Research Working Paper, no. 8762.Google Scholar
  15. Burridge, P., & Taylor, A. M. R. (1999). On Regression-based Tests for Seasonal Unit Roots in the Presence of Periodic Heteroskedasticity, Discussion Paper, No. 9910. Department of Economics, University of Birmingham.Google Scholar
  16. Campbell, J. Y., & Hamao, Y. (1992). Predictable stock returns in the United States and Japan: A study of long term capital integration. Journal of Finance, 47, 43–67.CrossRefGoogle Scholar
  17. Chan, K., & Tong, H. (1986). On estimating thresholds in autoregressive models. Journal of Time Series Analysis, 7, 179–194.CrossRefGoogle Scholar
  18. Daniel, K., & Titman, S. (2006). Market reactions to tangible and intangible information. The Journal of Finance, 61, 1605–1643.CrossRefGoogle Scholar
  19. Diebold, F. X., & Mariano, R. S. (1995). Comparing predictive accuracy. Journal of Business and Economic Statistics, 13, 253–265.Google Scholar
  20. De Lima, P. J. F. (1996). Nuisance parameter free properties of correlation integral based statistics. Econometric Reviews, 15, 237–259.CrossRefGoogle Scholar
  21. Ferson, W. E., & Harvey, C. R. (1993). The risk and predictability of international equity returns. Review of Financial Studies, 6, 527–566.CrossRefGoogle Scholar
  22. Franses, P., Van Dijk, D., & Lucas, A. (2004). Short patches of outliers, ARCH and volatility modelling. Applied Financial Economics, 14, 221–231.CrossRefGoogle Scholar
  23. Franses, P., & Van Dijk, D. (2000). Non-linear time series models in empirical finance. Cambridge: Cambridge University Press.CrossRefGoogle Scholar
  24. Glosten, L. R., Jagannathan, R., & Runkle, D. E. (1993). On the relation between the expected value and the volatility of the nominal excess return on stocks. Journal of Finance, 48, 1779–1801.CrossRefGoogle Scholar
  25. Granger, C. W. J., & Teräsvirta, T. (1993). Modelling nonlinear economic relationships. Oxford: Oxford University Press.Google Scholar
  26. Hamilton, J. D. (1994). Time series analysis. Princeton: Princeton University Press.Google Scholar
  27. Hendry, D. F. (1995). Dynamic econometrics. Oxford: Oxford University Press.Google Scholar
  28. Hirschleifer, D., Subrahmanyam, A., & Titman, S. (2006). Feedback and the success of irrational investors. Journal of Financial Economics, 81, 311–338.CrossRefGoogle Scholar
  29. Leybourne, S., Newbold, P., & Vougas, D. (1998). Unit roots and smooth transitions. Journal of Time Series Analysis, 19, 83–97.Google Scholar
  30. Majhi, R., Panda, G., Sahoo, G., Dash, P. K., & Das, D. P. (2007). Stock market prediction of S&P 500 and DJIA using bacterial foraging optimization technique. In: Evolutionary computation CEC 2007, IEEE congress, pp 2569-2575.Google Scholar
  31. Miao, K., Chen, F., & Zhao, Z. G. (2007). Stock price forecast based on bacterial colony RBF neural network. Journal of Qingdao University (Natural Science Edition), 20(2), 50–54.Google Scholar
  32. Mitchell, M. (1996). An introduction to genetic algorithms. Massachusetts: MIT Press Cambridge.Google Scholar
  33. Nevmyvaka, Y., Feng, Y., & Kearns, M. (2006). Reinforcement learning for optimized trade execution. ICML ’06 in: Proceedings of the 23rd international conference on Machine learning. ACM Press, pp 673–680.Google Scholar
  34. Newey, W. K., & West, K. D. (1994). Automatic lag selection in covariance matrix estimation. Review of Economic Studies, 61, 631–653.Google Scholar
  35. Peralta, J., Li, X., Gutierrez, G., & Sanchis, A. (2010). Time series forecasting by evolving artificial neural networks using genetic algorithms and differential evolution. Proceedings of the International Joint Conference on Neural Networks (IJCNN ’10) 1-8, IEEE.Google Scholar
  36. Pérez-Rodríguez, J. V., Torra, S., & Andrada-Félix, J. (2005). STAR and ANN models: forecasting performance on the Spanish “Ibex-35” stock index. Journal of Empirical Finance, 12(3), 490–509.CrossRefGoogle Scholar
  37. Pérez-Rodríguez, J. V., Torra, S., & Andrada-Félix, J. (2005). Are Spanish Ibex35 stock future index returns forecasted with non-linear models? Applied Financial Economics, 14, 963–975.CrossRefGoogle Scholar
  38. Peel, D. A., & Speight, A. E. H. (1996). Is the US business cycle asymmetric? Some further evidence. Applied Economics, 28, 405–415.Google Scholar
  39. Pesaran, M. H., & Timmermann, A. (1995). Predictability of stock returns: Robustness and economic significance. Journal of Finance, 50, 1201–1228.CrossRefGoogle Scholar
  40. Pesaran, M. H., & Timmermann, A. (2000). A recursive modelling approach to predicting UK stock returns. Economic Journal, 110, 159–191.CrossRefGoogle Scholar
  41. Qiu, X., Zhang, L., Ren, Y., Suganthan, P. N., & Amaratunga, G. (2014). Ensemble deep learning for regression and time series forecasting. Proceedings of the IEEE Symposium on Computational Intelligence in Ensemble Learning (CIEL), 1-6.Google Scholar
  42. Quandt, R. (1983). Computational problems and methods. In Z. Griliches & M. D. Intriligator (Eds.), Handbook of Econometrics (Vol. 1, pp. 699–746). Amsterdam: Elsevier Science.Google Scholar
  43. Sapankevych, N., & Sankar, R. (2013). Constrained motion particle swarm optimization and support vector regression for non-linear time series regression and prediction applications. Proceedings of the 12th International Conference on Machine Learning and Applications (ICMLA), 473-477.Google Scholar
  44. Stock, J., & Watson, M. W. (2003). Introduction to econometrics. New York: Prentice Hall.Google Scholar
  45. Takahama, T., Sakai, S., Hara, A., & Iwane, N. (2009). Predicting stock price using neural networks optimized by differential evolution with degeneration. International Journal of Innovative Computing, Information and Control, 5(12), 5021–5031.Google Scholar
  46. Teräsvirta, T. (1994). Specification, estimation, and evaluation of smooth transition autoregressive models. Journal of the American Statistical Association, 89, 208–218.Google Scholar
  47. Teräsvirta, T., & Anderson, H. M. (1992). Characterizing nonlinearities in business cycles using smooth transition autoregressive models. Journal of Applied Econometrics, 7, S119–S136.CrossRefGoogle Scholar
  48. Tong, H. (1978). On a threshold model. In C. H. Chen (Ed.), Pattern recognition and signal processing (pp. 101–141). Amsterdam: Sijthoff & Noordhoff.Google Scholar
  49. Tong, H. (1990). Non-linear time series: A dynamical systems approach. Oxford: Oxford University Press.Google Scholar
  50. Tong, H., & Lim, K. S. (1980). Threshold autoregressions, limit cycles, and data. Journal of the Royal Statistical Society B, 42, 245–292.Google Scholar
  51. Vega, C. (2006). Stock price reaction to public and private information. Journal of Financial Economics, 82, 103–133.CrossRefGoogle Scholar
  52. Van Dijk, D., Franses, P., & Lucas, A. (1999). Testing for ARCH in the presence of additive outliers. Journal of Applied Econometrics, 14, 539–562.CrossRefGoogle Scholar
  53. Worasucheep, C. (2007). A new self adaptive differential evolution: Its application in forecasting the index of stock exchange of Thailand. Proceedings of the IEEE Congress on Evolutionary Computation (CEC ’07), 1918-1925, Singapore.Google Scholar
  54. Zhang, G., Patuwo, B. E., & Hu, M. Y. (1998). Forecasting with artificial neural networks: The state of the art. International Journal of Forecasting, 14(1), 35–62.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  • Christos Avdoulas
    • 3
  • Stelios Bekiros
    • 1
    • 2
    Email author
  • Sabri Boubaker
    • 4
    • 5
  1. 1.IPAG Business SchoolParisFrance
  2. 2.Department of EconomicsEuropean University Institute (EUI)FlorenceItaly
  3. 3.Department of Accounting & FinanceAthens University of Economics & BusinessAthensGreece
  4. 4.Champagne School of BusinessESC TroyesTroyes CedexFrance
  5. 5.IRG - Université Paris EstMarne-la-Vallée Cedex2France

Personalised recommendations