Skip to main content

A spatiotemporal Data Envelopment Analysis (S-T DEA) approach: the need to assess evolving units


One of the major challenges in measuring efficiency in terms of resources and outcomes is the assessment of the evolution of units over time. Although Data Envelopment Analysis (DEA) has been applied for time series datasets, DEA models, by construction, form the reference set for inefficient units (lambda values) based on their distance from the efficient frontier, that is, in a spatial manner. However, when dealing with temporal datasets, the proximity in time between units should also be taken into account, since it reflects the structural resemblance among time periods of a unit that evolves. In this paper, we propose a two-stage spatiotemporal DEA (S-T DEA) approach, which captures both the spatial and temporal dimension through a multi-objective programming model. In the first stage, DEA is solved iteratively extracting for each unit only previous DMUs as peers in its reference set. In the second stage, the lambda values derived from the first stage are fed to a Multiobjective Mixed Integer Linear Programming model, which filters peers in the reference set based on weights assigned to the spatial and temporal dimension. The approach is demonstrated on a real-world example drawn from software development.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5


  1. Andersen, P., & Petersen, N. C. (1993). A procedure for ranking efficient units in data envelopment analysis. Management Science, 39(10), 1261–1264.

    Article  Google Scholar 

  2. Anderson, T. R., & Inman, L. (2011). Resolving the issue of multiple optima in Technology Forecasting using Data Envelopment Analysis. In IEEE Proceedings of PICMET’11 Technology Management in the Energy Smart World (PICMET) 2011, (pp. 1–5).

  3. Avkiran, N. K. (2009a). Opening the black box of efficiency analysis: An illustration with UAE banks. Omega, 37(4), 930–941.

    Article  Google Scholar 

  4. Avkiran, N. K. (2009b). Removing the impact of environment with units-invariant efficient frontier analysis: An illustrative case study with intertemporal panel data. Omega, 37(3), 535–544.

    Article  Google Scholar 

  5. Avkiran, N. K., & Rowlands, T. (2008). How to better identify the true managerial performance: State of the art using DEA. Omega, 36(2), 317–324.

    Article  Google Scholar 

  6. Banker, R. D., Cooper, W. W., Seiford, L. M., & Zhu, J. (2011). Returns to scale in DEA. In W. W. Cooper, L. M. Seiford, & J. Zhu (Eds.), Handbook on Data Envelopment Analysis (pp. 41–70). New York: Springer.

  7. Bergendahl, G. (1998). DEA and benchmarks—An application to Nordic banks. Annals of Operations Research, 82, 233–250.

    Article  Google Scholar 

  8. Brooke, A., Kendrick, D., Meeraus, A., & Raman, R. (2003). GAMS/CPLEX 9.0. user notes. Washington, DC: GAMS Development Corp.

    Google Scholar 

  9. Cao, Y., & Yang, Z. (2009). Using DEA window analysis and the Malmquist index to evaluate the operations of Canadian Schedule I banks. In IEEE/INFORMS International Conference on Service Operations, Logistics and Informatics, 2009. SOLI’09, (pp. 353–358).

  10. Charnes, A., Clark, C. T., Cooper, W. W., & Golany, B. (1984). A developmental study of data envelopment analysis in measuring the efficiency of maintenance units in the US air forces. Annals of Operations Research, 2(1), 95–112.

    Article  Google Scholar 

  11. Charnes, A., Cooper, W. W., & Rhodes, E. (1978). Measuring the efficiency of decision making units. European Journal of Operational Research, 2(6), 429–444.

    Article  Google Scholar 

  12. Charnes, A., Cooper, W. W., & Rhodes, E. (1981). Evaluating program and managerial efficiency: An application of data envelopment analysis to program follow through. Management Science, 27(6), 668–697.

    Article  Google Scholar 

  13. Chen, W.-C., & Johnson, A. L. (2010). The dynamics of performance space of Major League Baseball pitchers 1871–2006. Annals of Operations Research, 181(1), 287–302.

    Article  Google Scholar 

  14. Chen, P.-C., & Yu, M.-M. (2014). Total factor productivity growth and directions of technical change bias: Evidence from 99 OECD and non-OECD countries. Annals of Operations Research, 214(1), 143–165.

    Article  Google Scholar 

  15. Coelli, T. J., Prasada Rao, D. S., O’Donnell, C. J., & Battese, G. E. (2005). An introduction to efficiency and productivity analysis. New York: Springer.

  16. Cook, W. D., & Seiford, L. M. (2009). Data envelopment analysis (DEA)-Thirty years on. European Journal of Operational Research, 192(1), 1–17.

    Article  Google Scholar 

  17. Cooper, W. W., Seiford, L. M., & Tone, K. (2007). Data envelopment analysis: A comprehensive text with models, applications, references and DEA-solver software. New York: Springer.

  18. Couto, C., Maffort, C., Garcia, R., & Valente, M. T. (2013). COMETS: A dataset for empirical research on software evolution using source code metrics and time series analysis. ACM SIGSOFT Software Engineering Notes, 38(1), 1–3.

    Article  Google Scholar 

  19. Emrouznejad, A. (2003). An alternative DEA measure: A case of OECD countries. Applied Economics Letters, 10(12), 779–782.

    Article  Google Scholar 

  20. Emrouznejad, A., & Thanassoulis, E. (2005). A mathematical model for dynamic efficiency using data envelopment analysis. Applied Mathematics and Computation, 160(2), 363–378.

    Article  Google Scholar 

  21. Emrouznejad, A., & Thanassoulis, E. (2010). Measurement of productivity index with dynamic DEA. International Journal of Operational Research, 8(2), 247–260.

    Article  Google Scholar 

  22. Färe, R., Grosskopf, S., & Lovell, C. K. (1994). Production frontiers. Cambridge, UK: Cambridge University Press.

  23. Freed, N., & Glover, F. (1981). Simple but powerful goal programming models for discriminant problems. European Journal of Operational Research, 7(1), 44–60.

    Article  Google Scholar 

  24. Grifell-Tatjé, E., & Lovell, C. K. (1997). A DEA-based analysis of productivity change and intertemporal managerial performance. Annals of Operations Research, 73, 177–189.

    Article  Google Scholar 

  25. Hashimoto, A., & Kodama, M. (1997). Has livability of Japan gotten better for 1956–1990?: A DEA approach. Social Indicators Research, 40(3), 359–373.

    Article  Google Scholar 

  26. Inuiguchi, M., & Mizoshita, F. (2012). Qualitative and quantitative data envelopment analysis with interval data. Annals of Operations Research, 195(1), 189–220.

    Article  Google Scholar 

  27. Jain, S., Triantis, K. P., & Liu, S. (2011). Manufacturing performance measurement and target setting: A data envelopment analysis approach. European Journal of Operational Research, 214(3), 616–626.

    Article  Google Scholar 

  28. Lozano, S., & Villa, G. (2010). Gradual technical and scale efficiency improvement in DEA. Annals of Operations Research, 173(1), 123–136.

    Article  Google Scholar 

  29. Lynde, C., & Richmond, J. (1999). Productivity and efficiency in the UK: A time series application of DEA. Economic Modelling, 16(1), 105–122.

    Article  Google Scholar 

  30. Moreno, P., Lozano, S., & Gutiérrez, E. (2013). Dynamic performance analysis of US wireline telecommunication companies. Telecommunications Policy, 37(6–7), 469–482.

    Article  Google Scholar 

  31. Movahedi, M. M., Saati, S., & Vahidi, A. R. (2007). Iranian railway efficiency (1971–2004): An application of DEA. International Journal of Contemporary Mathematical Sciences, 2, 1569–1579.

    Google Scholar 

  32. Parnas, D. L. (1994). Software aging. In Proceedings of the 16th international conference on Software engineering, (pp. 279–287). Los Alamitos, CA, USA: IEEE Computer Society Press.

  33. Rosenthal, R. E. (2013). A GAMS tutorial. In GAMS Development Corporation (Eds.), GAMS: A user’s guide (pp. 7–28). Washington, DC, USA.

  34. Rutledge, R. W., Parsons, S., & Knaebel, R. (1995). Assessing hospital efficiency over time: An empirical application of data envelopment analysis. Journal of Information Technology Management, 6, 13–24.

    Google Scholar 

  35. Samoladas, I., Gousios, G., Spinellis, D., & Stamelos, I. (2008). The SQO-OSS quality model: Measurement based open source software evaluation. In B. Russo, E. Damiani, S. Hissam, B. Lundell, & G. Succi (Eds.), Open source development, communities and quality (pp. 237–248). New York: Springer.

    Chapter  Google Scholar 

  36. Seiford, L. M., & Zhu, J. (1998). On alternative optimal solutions in the estimation of returns to scale in DEA. European Journal of Operational Research, 108(1), 149–152.

    Article  Google Scholar 

Download references


Konstantinos Petridis would like to acknowledge that part of this work was co-funded within the framework of the Action “State Scholarships Foundation’s (IKY) mobility grants programme for the short term training in recognized scientific/research centers abroad for candidate doctoral or postdoctoral researchers in Greek universities or research” from the European Social Fund (ESF) programme “Lifelong Learning Programme 2007–2013”.

Author information



Corresponding author

Correspondence to Konstantinos Petridis.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.


Appendix 1: Proof of Proposition 1

Let us assume that a DMU(3) is inefficient and \(\lambda _1\), \(\lambda _2\) are two non-zero lambdas of its reference set corresponding to DMU(1) and DMU(2) respectively, and assume that \(\lambda _1 >\lambda _2 \), such that:

$$\begin{aligned}&\lambda _1 +\lambda _2 =1 \end{aligned}$$
$$\begin{aligned}&0\le \lambda _1 ,\lambda _2 \le 1 \end{aligned}$$

According to the temporal dimension, DMU(3) is closer to DMU(2), while according to the spatial dimension DMU(3) has a higher resemblance to DMU(1).

The corresponding efficiency from (3) will be \(\varphi \le \frac{1}{y_3}\cdot \left( {\lambda _1\cdot y_1+\lambda _2\cdot y_2}\right) \) (where \(y_3\) is the output of the DMU under study) and due to (24), the above inequality will be reformulated as follows:

$$\begin{aligned} \begin{array}{l} \varphi \le \frac{1}{y_3 }\cdot \left( {\lambda _1 \cdot y_1 +\lambda _2 \cdot y_2 } \right) \Leftrightarrow \\ \varphi \le \frac{1}{y_3 }\cdot \left[ {\lambda _1 \cdot y_1 +\left( {1-\lambda _1 } \right) \cdot y_2 } \right] \Leftrightarrow \\ \varphi \le \frac{1}{y_3 }\cdot \left[ {y_2 +\left( {y_1 -y_2 } \right) \cdot \lambda _1 } \right] \\ \end{array} \end{aligned}$$

The efficiency provided by the S-T DEA model will be the following:

$$\begin{aligned} {\hat{\varphi }}\le & {} \frac{y_1 }{y_3 },\,\hbox {if}\,w_t <w_{sp} \end{aligned}$$
$$\begin{aligned} {\hat{\varphi }}\le & {} \frac{y_2 }{y_3 },\,\hbox {if}\,w_t >w_{sp} \end{aligned}$$

Therefore, the efficiency \({\hat{\varphi }}\) is calculated from (9) by selecting the combination of \(y_1\), \(y_2\) that maximizes the value of \({\hat{\varphi }}\) satisfying the constraint. In the right hand side of inequalities (27) and (28), lambda values are omitted due to the constraints (9) and (11) of the S-T DEA model.

In order to prove that \(\varphi \ge {\hat{\varphi }}\forall y\) the relative position of \(\varphi \) and \({\hat{\varphi }}\) by means of order relationships should be investigated. For this reason, two scenarios about the arrangement of \(y_1\) and \(y_2\) are examined:

  • \(y_1<y_2\)

In this case, \(y_2+\left( {y_1-y_2}\right) \cdot \lambda _1<y_2\) as \(\left( {y_1-y_2}\right) \cdot \lambda _1<0\) (for the sake of simplicity denominator \(y_3\) is dropped from the analysis since it is equal to all instances). To investigate the order relation of \(y_2+\left( {y_1-y_2}\right) \cdot \lambda _1\) with \(y_1\), we reformulate the right hand side of inequality (26) with respect to \(y_1\) as follows:

$$\begin{aligned} y_1 +\left( {y_2 -y_1 } \right) \cdot \lambda _2 \end{aligned}$$

From (29), it can be seen that as \(\left( {y_2-y_1}\right) \cdot \lambda _2>0\), then \(y_1+\left( {y_2-y_1}\right) \cdot \lambda _2>y_1\). Therefore, the following order relationship is formulated:

$$\begin{aligned} y_1<y_1+\left( {y_2-y_1}\right) \cdot \lambda _2=y_2+\left( {y_1-y_2}\right) \cdot \lambda _1<y_2 \end{aligned}$$

The initial assumption \(y_1<y_2\) is reformulated as \(y_2=y_1+k\), where k is a real non-negative number. By substitution in (26), the following is derived:

$$\begin{aligned} \begin{array}{l} \varphi \le \frac{1}{y_3 }\cdot \left[ {\lambda _1 \cdot y_1 +\lambda _2 \cdot \left( {y_1 +k} \right) } \right] \Leftrightarrow \\ \varphi \le \frac{1}{y_3 }\cdot \left[ {\left( {\lambda _1 +\lambda _2 } \right) \cdot y_1 +\lambda _2 \cdot k} \right] \Leftrightarrow \\ \varphi \le \frac{1}{y_3 }\cdot \left( {y_1 +\lambda _2 \cdot k} \right) \\ \end{array} \end{aligned}$$

Comparing the right hand sides of inequalities (27) and (31), it is obvious that \(y_1+\lambda _2\cdot k>y_1\), consequently, \(\varphi \ge {\hat{\varphi }}\).

  • \(y_1 >y_2 \)

In this case \(y_1 +\left( {y_2 -y_1 } \right) \cdot \lambda _2 <y_1 \) as \(\left( {y_2 -y_1 } \right) \cdot \lambda _2 <0\). To investigate the order relationship with \(y_2 \), we reformulate (22) with respect to \(y_2 \) as follows:

$$\begin{aligned} y_2 +\left( {y_1 -y_2 } \right) \cdot \lambda _1 \end{aligned}$$

From (30), it can be seen that as \(\left( {y_2 -y_1 } \right) \cdot \lambda _2 >0\), then \(y_2 +\left( {y_1 -y_2 } \right) \cdot \lambda _1>y_2\). Therefore, the following order relationship is formulated:

$$\begin{aligned} y_2 <y_2 +\left( {y_1 -y_2 } \right) \cdot \lambda _1 =y_1 +\left( {y_2 -y_1 } \right) \cdot \lambda _2 <y_1 \end{aligned}$$

The initial assumption \(y_1 <y_2 \) is reformulated as \(y_1 =y_2 +m\), where m is a real non-negative number. By substitution in (26), the following is derived:

$$\begin{aligned} \begin{array}{l} \varphi \le \frac{1}{y_3 }\cdot \left[ {\lambda _1 \cdot \left( {y_1 +m} \right) +\lambda _2 \cdot y_2 } \right] \Leftrightarrow \\ \varphi \le \frac{1}{y_3 }\cdot \left[ {\left( {\lambda _1 +\lambda _2 } \right) \cdot y_2 +\lambda _1 \cdot m} \right] \Leftrightarrow \\ \varphi \le \frac{1}{y_3 }\cdot \left( {y_2 +\lambda _1 \cdot m} \right) \\ \end{array} \end{aligned}$$

Comparing the right hand sides of inequalities (28) and (34), it is obvious that \(y_2 +\lambda _1\cdot m>y_2\), consequently, \(\varphi \ge {\hat{\varphi }}\).

Appendix 2: Proof of Proposition 2

Let \(\lambda _i^{DEA}\in {\mathcal {F}}^{DEA}\) be the optimal lambdas of DEA output model described by (1)–(4), \(\lambda _i^{S-T\,DEA}\in {\mathcal {F}}^{S-T\,DEA}\) be the optimal lambdas of S-T DEA model, described by (9)–(13), and \({\mathcal {F}}^{\bullet }\) be the efficiency set of model \(\bullet \). By construction of tables A and \({\varvec{\Delta }}\), a lambda that appears in \({\mathcal {F}}^{DEA}\) will also appear in \({\mathcal {F}}^{S-T\,DEA}\). From the S-T DEA model, only one weight dependent solution will be selected among the lambdas provided by the initial DEA model (1)–(4) and thus, the feasibility of the model is guaranteed and furthermore it stands that: \({\mathcal {F}}^{S-T\,DEA}\subseteq {\mathcal {F}}^{DEA}\).

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Petridis, K., Chatzigeorgiou, A. & Stiakakis, E. A spatiotemporal Data Envelopment Analysis (S-T DEA) approach: the need to assess evolving units. Ann Oper Res 238, 475–496 (2016).

Download citation


  • Data Envelopment Analysis
  • Efficiency
  • OR in software
  • Multiobjective programming
  • Linear Programming