Advertisement

Annals of Operations Research

, Volume 255, Issue 1–2, pp 221–239 | Cite as

Eco-efficiency measurement and material balance principle: an application in power plants Malmquist Luenberger Index

  • Behrouz Arabi
  • Susila Munisamy Doraisamy
  • Ali Emrouznejad
  • Alireza Khoshroo
Article

Abstract

Incorporating Material Balance Principle (MBP) in industrial and agricultural performance measurement systems with pollutant factors has been on the rise in recent years. Many conventional methods of performance measurement have proven incompatible with the material flow conditions. This study will address the issue of eco-efficiency measurement adjusted for pollution, taking into account materials flow conditions and the MBP requirements, in order to provide ‘real’ measures of performance that can serve as guides when making policies. We develop a new approach by integrating slacks-based measure to enhance the Malmquist Luenberger Index by a material balance condition that reflects the conservation of matter. This model is compared with a similar model, which incorporates MBP using the trade-off approach to measure productivity and eco-efficiency trends of power plants. Results reveal similar findings for both models substantiating robustness and applicability of the proposed model in this paper.

Keywords

Data Envelopment Analysis Material Balance Principle  Slacks-based model Eco-efficiency Malmquist Luenberger Index 

References

  1. Arabi, B., Munisamy, S., & Emrouznejad, A. (2015). A new slacks-based measure of Malmquist–Luenberger index in the presence of undesirable outputs. Omega, 51, 29–37.CrossRefGoogle Scholar
  2. Arabi, B., Munisamy, S., Emrouznejad, A., & Shadman, F. (2014). Power industry restructuring and eco-efficiency changes: A new slacks-based model in Malmquist–Luenberger Index measurement. Energy Policy, 68, 132–145.CrossRefGoogle Scholar
  3. Ayres, R. U., & Kneese, A. V. (1969). Production, consumption, and externalities. The American Economic Review, 59(3), 282–297.Google Scholar
  4. Banker, R. D., Charnes, A., & Cooper, W. W. (1984). Some models for estimating technical and scale inefficiencies in data envelopment analysis. Management Science, 30(9), 1078–1092.CrossRefGoogle Scholar
  5. Baumgärtner, S., Dyckhoff, H., Faber, M., Proops, J., & Schiller, J. (2001). The concept of joint production and ecological economics. Ecological Economics, 36(3), 365–372.CrossRefGoogle Scholar
  6. Berg, S. A., Førsund, F. R., & Jansen, E. S. (1992). Malmquist indices of productivity growth during the deregulation of Norwegian banking, 1980–89. The Scandinavian Journal of Economics, 94, 211–228.CrossRefGoogle Scholar
  7. Bilsel, M., & Davutyan, N. (2014). Hospital efficiency with risk adjusted mortality as undesirable output: the Turkish case. Annals of Operations Research, 221(1), 73–88.CrossRefGoogle Scholar
  8. Briec, W. (1997). A graph-type extension of Farrell technical efficiency measure. Journal of Productivity Analysis, 8(1), 95–110.CrossRefGoogle Scholar
  9. Burnett, R. D., & Hansen, D. R. (2008). Ecoefficiency: Defining a role for environmental cost management. Accounting, Organizations and Society, 33(6), 551–581.CrossRefGoogle Scholar
  10. Charnes, A., Cooper, W., & Rhodes, E. (1978). Measuring the efficiency of decision making units. European journal of operational research, 2(6), 429–444.CrossRefGoogle Scholar
  11. Chung, Y. H., Färe, R., & Grosskopf, S. (1997). Productivity and undesirable outputs: A directional distance function approach. Journal of Environmental Management, 51(3), 229–240.CrossRefGoogle Scholar
  12. Coelli, T., Lauwers, L., & Huylenbroeck, G. (2007). Environmental efficiency measurement and the materials balance condition. Journal of Productivity Analysis, 28(1–2), 3–12.CrossRefGoogle Scholar
  13. Diabat, A., Shetty, U., & Pakkala, T. (2013). Improved efficiency measures through directional distance formulation of data envelopment analysis. Annals of Operations Research, 229(1), 1–22.Google Scholar
  14. Emrouznejad, A. (2014). Advances in data envelopment analysis. Annals of Operations Research, 214(1), 1–4.CrossRefGoogle Scholar
  15. Emrouznejad, A., Parker, B. R., & Tavares, G. (2008). Evaluation of research in efficiency and productivity: A survey and analysis of the first 30 years of scholarly literature in DEA. Socio-Economic Planning Sciences, 42(3), 151–157.CrossRefGoogle Scholar
  16. Färe, R., & Grosskopf, S. (2010a). Directional distance functions and slacks-based measures of efficiency. European journal of operational research, 200(1), 320–322.CrossRefGoogle Scholar
  17. Färe, R., & Grosskopf, S. (2010b). Directional distance functions and slacks-based measures of efficiency: Some clarifications. European Journal of Operational Research, 206(3), 702.CrossRefGoogle Scholar
  18. Fare, R., Grosskopf, S., Lovell, C. A. K., & Pasurka, C. (1989). Multilateral productivity comparisons when some outputs are undesirable: A nonparametric approach. The Review of Economics and Statistics, 71(1), 90–98.CrossRefGoogle Scholar
  19. Färe, R., Grosskopf, S., Noh, D.-W., & Weber, W. (2005). Characteristics of a polluting technology: Theory and practice. Journal of Econometrics, 126(2), 469–492.CrossRefGoogle Scholar
  20. Färe, R., Grosskopf, S., & Pasurka, C, Jr. (2013). Joint production of good and bad outputs with a network application. In Encyclopedia of Energy, Natural Resources and Environmental Economics.Google Scholar
  21. Färe, R., Grosskopf, S., & Pasurka, J. C. A. (2007). Environmental production functions and environmental directional distance functions. Energy, 32(7), 1055–1066.CrossRefGoogle Scholar
  22. Färe, R., Grosskopf, S., & Tyteca, D. (1996). An activity analysis model of the environmental performance of firms—application to fossil-fuel-fired electric utilities. Ecological Economics, 18(2), 161–175.CrossRefGoogle Scholar
  23. Farrell, M. J. (1957). The measurement of productive efficiency. Journal of the Royal Statistical Society Series A (General), 120(3), 253–290.CrossRefGoogle Scholar
  24. Field, B. C. (1994). Environmental Economics. An Introduction. Economics Series. New York: Mc Graw Hill.Google Scholar
  25. Field, B., & Olewiler, N. (2005). Environmental Economics (Updated second Canadian edition). Whitby: McGraw-Hill Ryerson Limited.Google Scholar
  26. Golany, B., Roll, Y., & Rybak, D. (1994). Measuring efficiency of power plants in Israel by data envelopment analysis. IEEE Transactions on Engineering Management, 41(3), 291–301.CrossRefGoogle Scholar
  27. Hadi Vencheh, A., Kazemi Matin, R., & Tavassoli Kajani, M. (2005). Undesirable factors in efficiency measurement. Applied Mathematics and Computation, 163(2), 547–552.CrossRefGoogle Scholar
  28. Huang, X., Hu, D., & Zhou, Z. (2013). Measuring efficiency in Chinese commercial banks using a DEA model with undesirable output. International Journal of Information and Decision Sciences, 5(2), 140–153.CrossRefGoogle Scholar
  29. Jahanshahloo, G. R., Lotfi, F. H., Shoja, N., Tohidi, G., & Razavyan, S. (2005). Undesirable inputs and outputs in DEA models. Applied Mathematics and Computation, 169(2), 917–925.CrossRefGoogle Scholar
  30. Khoshroo, A., Mulwa, R., Emrouznejad, A., & Arabi, B. (2013). A non-parametric Data Envelopment Analysis approach for improving energy efficiency of grape production. Energy, 63, 189–194.CrossRefGoogle Scholar
  31. Korhonen, P. J., & Luptacik, M. (2004). Eco-efficiency analysis of power plants: An extension of data envelopment analysis. European Journal of Operational Research, 154(2), 437–446.CrossRefGoogle Scholar
  32. Kuosmanen, N., & Kuosmanen, T. (2013). Modeling cumulative effects of nutrient surpluses in agriculture: A dynamic approach to material balance accounting. Ecological Economics, 90, 159–167.CrossRefGoogle Scholar
  33. Lauwers, L. (2009). Justifying the incorporation of the materials balance principle into frontier-based eco-efficiency models. Ecological Economics, 68(6), 1605–1614.CrossRefGoogle Scholar
  34. Lauwers, L., Van Huylenbroeck, G., & Rogiers, G. (1999). Technical, economic and environmental efficiency analysis of pig fattening farms. In Poster presentation at the 9th European Congress of Agricultural Economists, Warschau. Polen, August 24th–28th.Google Scholar
  35. Lozano, S., Gutiérrez, E., & Moreno, P. (2013). Network DEA approach to airports performance assessment considering undesirable outputs. Applied Mathematical Modelling, 37(4), 1665–1676.CrossRefGoogle Scholar
  36. Munisamy, S., & Arabi, B. (2015). Eco-efficiency Change in power plants: Using a slacks-based measure for the meta-frontier Malmquist Luenberger productivity index. Journal of Cleaner Production, 105, 218–232.CrossRefGoogle Scholar
  37. Murty, S., Robert Russell, R., & Levkoff, S. B. (2012). On modeling pollution-generating technologies. Journal of Environmental Economics and Management, 64(1), 117–135.CrossRefGoogle Scholar
  38. Pethig, R. (2006). Non-linear production, abatement, pollution and materials balance reconsidered. Journal of Environmental Economics and Management, 51(2), 185–204.CrossRefGoogle Scholar
  39. Picazo-Tadeo, A. J., Reig-Martínez, E., & Hernández-Sancho, F. (2005). Directional distance functions and environmental regulation. Resource and Energy Economics, 27(2), 131–142.CrossRefGoogle Scholar
  40. Podinovski, V. (2004). Production trade-offs and weight restrictions in data envelopment analysis. Journal of the Operational Research Society, 55(12), 1311–1322.CrossRefGoogle Scholar
  41. Ramli, N. A., Munisamy, S., & Arabi, B. (2013). Scale directional distance function and its application to the measurement of eco-efficiency in the manufacturing sector. Annals of Operations Research, 211(1), 1–18.CrossRefGoogle Scholar
  42. Reinhard, S., Knox Lovell, C. A., & Thijssen, G. J. (2000). Environmental efficiency with multiple environmentally detrimental variables; estimated with SFA and DEA. European Journal of Operational Research, 121(2), 287–303.CrossRefGoogle Scholar
  43. Seiford, L. M. (1996). Data envelopment analysis: The evolution of the state of the art (1978–1995). Journal of Productivity Analysis, 7(2), 99–137.CrossRefGoogle Scholar
  44. Shephard, R. W., Gale, D., & Kuhn, H. W. (1970). Theory of cost and production functions. Princeton, NJ: Princeton University Press.Google Scholar
  45. Thanh Nguyen, T., Hoang, V. N., & Seo, B. (2012). Cost and environmental efficiency of rice farms in South Korea. Agricultural Economics, 43(4), 369–378.CrossRefGoogle Scholar
  46. Tone, K. (2001). A slacks-based measure of efficiency in data envelopment analysis. European Journal of Operational Research, 130(3), 498–509.CrossRefGoogle Scholar
  47. Tyteca, D. (1997). Linear programming models for the measurement of environmental performance of firms-concepts and empirical results. Journal of Productivity Analysis, 8(2), 183–197.CrossRefGoogle Scholar
  48. Utlu, Z., & Kincay, O. (2013). An assessment of a pulp and paper mill through energy and exergy analyses. Energy, 57, 565–573.CrossRefGoogle Scholar
  49. Van der Hamsvoort, C. P. C. M., & Latacz-Lohmann, U. (1998). Sustainability: A review of the debate and an extension. International Journal of Sustainable Development and World Ecology, 5, 99–110.CrossRefGoogle Scholar
  50. Wei, Y.-M., Liao, H., & Fan, Y. (2007). An empirical analysis of energy efficiency in China’s iron and steel sector. Energy, 32(12), 2262–2270.CrossRefGoogle Scholar
  51. Welch, E., & Barnum, D. (2009). Joint environmental and cost efficiency analysis of electricity generation. Ecological Economics, 68(8–9), 2336–2343.CrossRefGoogle Scholar
  52. Yang, C.-C. (2014). An enhanced DEA model for decomposition of technical efficiency in banking. Annals of Operations Research, 214(1), 167–185.CrossRefGoogle Scholar
  53. Zhou, G., Chung, W., & Zhang, X. (2013). A study of carbon dioxide emissions performance of China’s transport sector. Energy, 50, 302–314.CrossRefGoogle Scholar
  54. Zhou, P., Poh, K. L., & Ang, B. W. (2007). A non-radial DEA approach to measuring environmental performance. European Journal of Operational Research, 178(1), 1–9.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  • Behrouz Arabi
    • 1
  • Susila Munisamy Doraisamy
    • 1
  • Ali Emrouznejad
    • 2
  • Alireza Khoshroo
    • 3
  1. 1.Faculty of Economics and AdministrationUniversity of MalayaKuala LumpurMalaysia
  2. 2.Aston Business SchoolAston UniversityBirminghamUK
  3. 3.Department of Agricultural Engineering, Faculty of AgricultureYasouj UniversityYasoujIran

Personalised recommendations