Skip to main content
Log in

An analytical derivation of the efficient surface in portfolio selection with three criteria

  • Published:
Annals of Operations Research Aims and scope Submit manuscript

Abstract

In standard mean-variance bi-criterion portfolio selection, the efficient set is a frontier. While it is not yet standard for there to be additional criteria in portfolio selection, there has been a growing amount of discussion in the literature on the topic. However, should there be even one additional criterion, the efficient frontier becomes an efficient surface. Striving to parallel Merton’s seminal analytical derivation of the efficient frontier, in this paper we provide an analytical derivation of the efficient surface when an additional linear criterion (on top of expected return and variance) is included in the model addressed by Merton. Among the results of the paper there is, as a higher dimensional counterpart to the 2-mutual-fund theorem of traditional portfolio selection, a 3-mutual-fund theorem in tri-criterion portfolio selection. 3D graphs are employed to stress the paraboloidic/hyperboloidic structures present in tri-criterion portfolio selection.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Notes

  1. Points \(\mathbf{x}^0, \mathbf{x}^{1}, \ldots , \mathbf{x}^m\) are affinely independent if \(\mathbf{x}^{1}-\mathbf{x}^0, \ldots , \mathbf{x}^m-\mathbf{x}^0\) are linearly independent.

References

  • Aouni, B., Colapinto, C., & La Torre, D. (2014). Financial portfolio management through the goal programming model: Current state-of-the-art. European Journal of Operational Research, 234(2), 536–545.

    Article  Google Scholar 

  • Ballestero, E., Bravo, M., Pérez-Gladish, B., Arenas-Parra, M., & Plà-Santamaria, D. (2012). Socially responsible investment: A multicriteria approach to portfolio selection combining ethical and financial objectives. European Journal of Operational Research, 216(2), 487–494.

    Article  Google Scholar 

  • Bana e Costa, C. A., & Soares, J. O. (2001). Multicriteria approaches for portfolio selection: An overview. Review of Financial Markets, 4(1), 19–26.

    Google Scholar 

  • Ben Abdelaziz, F., Aouni, B., & El Fayedh, R. (2007). Multi-objective stochastic programming for portfolio selection. European Journal of Operational Research, 177(3), 1811–1823.

    Article  Google Scholar 

  • Bilbao-Terol, A., Arenas-Parra, M., Cañal-Fernández, V., & Bilbao-Terol, C. (2013). Selection of socially responsible portfolios using hedonic prices. Journal of Business Ethics, 115(3), 515–529.

    Article  Google Scholar 

  • Cabello, J. M., Ruiz, F., Pérez-Gladish, B., & Méndez-Rodriguez, P. (2014). Synthetic indicators of mutual funds’ environmental responsibility: An application of the reference point method. European Journal of Operational Research, 236(1), 313–325.

    Article  Google Scholar 

  • Calvo, C., Ivorra, C., & Liern, V. (2014). Fuzzy portfolio selection with non-financial goals: Exploring the efficient frontier. Annals of Operations Research. doi:10.1007/s10479-014-1561-2.

  • Chow, G. (1995). Portfolio selection based on return, risk, and relative performance. Financial Analysts Journal, 51(2), 54–60.

  • Dorfleitner, G., Leidl, M., & Reeder, J. (2012). Theory of social returns in portfolio choice with application to microfinance. Journal of Asset Management, 13(6), 384–400.

    Article  Google Scholar 

  • Ehrgott, M. (2005). Multicriteria optimization (2nd ed.). Berlin: Springer.

    Google Scholar 

  • Ehrgott, M., Klamroth, K., & Schwehm, C. (2004). An MCDM approach to portfolio optimization. European Journal of Operational Research, 155(3), 752–770.

    Article  Google Scholar 

  • Feuersänger, C. (2014). Manual for package PGFPLOTS, version 1.11, Universität Bonn.

  • Guerard, J. B., & Mark, A. (2004). Data show importance of company R&D in picking stocks. Pensions & Investments, 32(25), 30–31.

    Google Scholar 

  • Hallerbach, W. G., Ning, H., Soppe, A., & Spronk, J. (2004). A framework for managing a portfolio of socially responsible investments. European Journal of Operational Research, 153(2), 517–529.

    Article  Google Scholar 

  • Hirschberger, M., Steuer, R. E., Utz, S., Wimmer, M., & Qi, Y. (2013). Computing the nondominated surface in tri-criterion portfolio selection. Operations Research, 61(1), 169–183.

    Article  Google Scholar 

  • Huang, C., & Litzenberger, R. H. (1988). Foundations for financial economics. Englewood Cliffs, NJ: Prentice Hall.

    Google Scholar 

  • Konno, H., & Suzuki, K. I. (1995). A mean-variance-skewness portfolio optimization model. Journal of the Operations Research Society of Japan, 38(2), 173–187.

    Google Scholar 

  • Lee, S. M. (1972). Goal programming for decision analysis. Philadelphia: Auerbach Publishers.

    Google Scholar 

  • Lo, A. W., Petrov, C., & Wierzbicki, M. (2003). It’s 11pm—do you know where your liquidity is? The mean-variance-liquidity frontier. Journal of Investment Management, 1(1), 55–93.

    Google Scholar 

  • Markowitz, H. M. (1952). Portfolio selection. Journal of Finance, 7(1), 77–91.

    Google Scholar 

  • Merton, R. C. (1972). An analytical derivation of the efficient portfolio frontier. Journal of Financial and Quantitative Analysis, 7(4), 1851–1872.

    Article  Google Scholar 

  • Miettinen, K. (1999). Nonlinear multiobjective optimization. Boston: Kluwer.

    Google Scholar 

  • Pérez-Gladish, B., Méndez-Rodriguez, P., M’Zali, B., & Lang, P. (2013). Mutual funds efficiency measurement under financial and social responsibility criteria. Journal of Multi-Criteria Decision Analysis, 20(3–4), 109–125.

    Article  Google Scholar 

  • Speranza, M. G. (1996). A heuristic algorithm for a portfolio optimization model applied to the Milan stock market. Computers & Operations Research, 23(5), 431–441.

    Google Scholar 

  • Spronk, J., & Hallerbach, W. G. (1997). Financial modelling: Where to go? With an illustration for portfolio management. European Journal of Operational Research, 99(1), 113–127.

    Article  Google Scholar 

  • Spronk, J., & Zambruno, G. M. (1981). A multiple-criteria approach to portfolio selection. In Göppl, H., Henn, R. (Eds.) Geld, Banken und Versicherungen, Band 1, Athenum, pp. 451–459.

  • Steuer, R. E., & Na, P. (2003). Multiple criteria decision making combined with finance: A categorized bibliography. European Journal of Operational Research, 150(3), 496–515.

    Article  Google Scholar 

  • Steuer, R. E., Qi, Y., & Hirschberger, M. (2007). Suitable-portfolio investors, nondominated frontier sensitivity, and the effect of multiple objectives on standard portfolio selection. Annals of Operations Research, 152(1), 297–317.

    Article  Google Scholar 

  • Stone, B. K. (1973). A linear programming formulation of the general portfolio selection problem. Journal of Financial and Quantitative Analysis, 8(4), 621–636.

    Article  Google Scholar 

  • Utz, S., Wimmer, M., Hirschberger, M., & Steuer, R. E. (2014). Tri-criterion inverse portfolio optimization with application to socially responsible mutual funds. European Journal of Operational Research, 234(2), 491–498.

    Article  Google Scholar 

  • Utz, S., Wimmer, M., & Steuer, R. E. (2015). Tri-criterion modeling for creating more-sustainable mutual funds. European Journal of Operational Research. doi:10.1016/j.ejor.2015.04.035.

  • Xidonas, P., Mavrotas, G., Krintas, T., Psarras, J., & Zopounidis, C. (2012). Multicriteria portfolio management. Berlin: Springer.

    Book  Google Scholar 

  • Ziemba, W. (2006). Personal communication at 21st European Conference on Operational Research, Reykjavik, Iceland, July 3.

Download references

Acknowledgments

The authors are thankful to Markus Hirschberger for comments and to the software package PGFPLOTS by Feuersänger (2014) for use in constructing the graphs. The first author acknowledges support from the Ministry of Education of China (Grant No. 14JJD630007), the National Natural Science Foundation of China (Grant No. 71132001), and the Program for Changjiang Scholars and Innovative Research Team in University, IRT0926.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ralph E. Steuer.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Qi, Y., Steuer, R.E. & Wimmer, M. An analytical derivation of the efficient surface in portfolio selection with three criteria. Ann Oper Res 251, 161–177 (2017). https://doi.org/10.1007/s10479-015-1900-y

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10479-015-1900-y

Keywords

Navigation