Annals of Operations Research

, Volume 251, Issue 1–2, pp 205–242 | Cite as

A fuzzy multiple-attribute decision making model to evaluate new product pricing strategies

  • Adil Baykasoğlu
  • İlker Gölcük
  • Derya Eren Akyol
Article

Abstract

The aim of this paper is to provide a new fuzzy Multiple-Attribute Decision Making model for evaluating product pricing strategies. The problem is structured in a hierarchical setting. Possible interactions and interdependencies among hierarchically structured criteria are taken into consideration. Since new product pricing decisions entail decision makers’ uncertain judgments concerning many interacting factors, Fuzzy Cognitive Maps are employed to analyze causal dependencies among attributes. Finally, decision makers’ linguistic assessments are transformed into ranking orders of the pricing strategies using the Technique for Order Preference by Similarity to Ideal Solution. The proposed model is implemented in a Turkish software company. The case study has showed that the proposed model is practical and easy to apply. The proposed model can be incorporated into marketing strategies of wide variety of new products.

Keywords

New product pricing Fuzzy cognitive maps Hierarchical fuzzy TOPSIS MADM 

References

  1. Adams, W. J., & Yellen, J. L. (1976). Commodity bundling and the burden of monopoly. The Quarterly Journal of Economics, 90(3), 475–498.CrossRefGoogle Scholar
  2. Akan, M., Ata, B., & Savaşkan-Ebert, R. C. (2013). Dynamic pricing of remanufacturable products under demand substitution: A product life cycle model. Annals of Operations Research, 211(1), 1–25.CrossRefGoogle Scholar
  3. Akgun, I., Kandakoglu, A., & Ozok, A. F. (2010). Fuzzy integrated vulnerability assessment model for critical facilities in combating the terrorism. Expert Systems with Applications, 37(5), 3561–3573.CrossRefGoogle Scholar
  4. Allen, T. T., & Maybin, K. M. (2004). Using focus group data to set new product prices. Journal of Product & Brand Management, 13(1), 15–24.CrossRefGoogle Scholar
  5. Allenby, G. M., & Rossi, P. E. (1998). Marketing models of consumer heterogeneity. Journal of Econometrics, 89(1–2), 57–78.CrossRefGoogle Scholar
  6. Andreou, A. S., Mateou, N. H., & Zombanakis, G. A. (2005). Soft computing for crisis management and political decision making: The use of genetically evolved fuzzy cognitive maps. Soft Computing, 9(3), 194–210.CrossRefGoogle Scholar
  7. Bao, Q., Ruan, D., Shen, Y., Hermans, E., & Janssens, D. (2012). Improved hierarchical fuzzy TOPSIS for road safety performance evaluation. Knowledge-Based Systems, 32, 84–90.CrossRefGoogle Scholar
  8. Bass, F. M., & Bultez, A. V. (1982). Technical note—A note on optimal strategic pricing of technological innovations. Marketing Science, 1(4), 371–378.CrossRefGoogle Scholar
  9. Baykasoğlu, A., & Gölcük, İ. (2015). Development of a novel multiple-attribute decision making model via fuzzy cognitive maps and hierarchical fuzzy TOPSIS. Information Sciences, 301, 75–98.CrossRefGoogle Scholar
  10. Baykasoğlu, A., Kaplanoğlu, V., Durmuşoğlu, Z. D. U., & Şahin, C. (2013). Integrating fuzzy DEMATEL and fuzzy hierarchical TOPSIS methods for truck selection. Expert Systems with Applications, 40(3), 899–907.CrossRefGoogle Scholar
  11. Benlian, A., & Hess, T. (2011). Opportunities and risks of software-as-a-service: Findings from a survey of IT executives. Decision Support Systems, 52(1), 232–246.CrossRefGoogle Scholar
  12. Bertolini, M., & Bevilacqua, M. (2010). Fuzzy cognitive maps for human reliability analysis in production systems. In C. Kahraman, & M. Yavuz (Eds.), Production Engineering and Management under Fuzziness (vol. 252, pp. 381–415, Studies in Fuzziness and Soft Computing): Springer, Berlin Heidelberg.Google Scholar
  13. Besanko, D., & Winston, W. L. (1990). Optimal price skimming by a monopolist facing rational consumers. Management Science, 36(5), 555–567.CrossRefGoogle Scholar
  14. Biloslavo, R., & Grebenc, A. (2012). Integrating group delphi, analytic hierarchy process and dynamic fuzzy cognitive maps for a climate warning scenario. Kybernetes, 41(3), 414–428.CrossRefGoogle Scholar
  15. Binkley, J. K., & Connor, J. M. (1998). Grocery market pricing and the new competitive environment. Journal of Retailing, 74(2), 273–294.CrossRefGoogle Scholar
  16. Bojadziev, G., & Bojadziev, M. (2007). Fuzzy logic for business, finance, and management (vol. 5), Advances in fuzzy systems—applications and theory Cleveland, OH: World Scientific Publishing.Google Scholar
  17. Campbell-Kelly, M. (2009). Historical reflections the rise, fall, and resurrection of software as a service. Communications of the ACM, 52(5), 28–30.CrossRefGoogle Scholar
  18. Cavusoglu, H., Mishra, B., & Raghunathan, S. (2004). A model for evaluating IT security investments. Communications of the ACM, 47(7), 87–92.CrossRefGoogle Scholar
  19. Chatterjee, R. (2009). Strategic pricing of new products and services. In V. R. Rao (Ed.), Handbook of pricing research in marketing. UK: Edward Elgar.Google Scholar
  20. Chatterjee, R., Eliashberg, J., & Rao, V. R. (2000). Dynamic models incorporating competition. In V. Mahajan, E. Muller, & Y. Wind (Eds.), New-product diffusion models (pp. 165–205). Boston: Kluwer Academic Publishers.Google Scholar
  21. Chen, Y.-M., & Jain, D. C. (1992). Dynamic monopoly pricing under a poisson-type uncertain demand. The Journal of Business, 65(4), 593–614.CrossRefGoogle Scholar
  22. Corrente, S., Greco, S., & Słowiński, R. (2013). Multiple criteria hierarchy process with ELECTRE and PROMETHEE. Omega, 41(5), 820–846.CrossRefGoogle Scholar
  23. Cox, E., & O’Hagan, M. (1998). The fuzzy systems handbook. San Diego: USA Morgan Kaufmann.Google Scholar
  24. Dean, J. (1976). Pricing policies for new products. Hardvard Business Review, 28, 141–153.Google Scholar
  25. Dereli, T., & Baykasoğlu, A. (2007). Toplam Marka Yönetimi (total brand management). Istanbul: Hayat Publishing. (in Turkish).Google Scholar
  26. Dewar, R. D., & Dutton, J. E. (1986). The adoption of radical and incremental innovations: An empirical analysis. Management Science, 32(11), 1422–1433.CrossRefGoogle Scholar
  27. Dockner, E. J., & Gaunersdorfer, A. (1996). Strategic new product pricing when demand obeys saturation effects. European Journal of Operational Research, 90(3), 589–598.CrossRefGoogle Scholar
  28. Dolan, R. J., & Jeuland, A. P. (1981). Experience curves and dynamic demand models: Implications for optimal pricing strategies. Journal of Marketing, 45(1), 52–62.CrossRefGoogle Scholar
  29. Dratler, J. (1994). Licensing of intellectual property. New York: Law Journal Press.Google Scholar
  30. Dyer, J. S. (2005). Maut—multiattribute utility theory. In Multiple criteria decision analysis: State of the art surveys (vol. 78, pp. 265–292, International Series in Operations Research & Management Science). New York: Springer.Google Scholar
  31. Ellison, G., & Ellison, S. F. (2009). Search, obfuscation, and price elasticities on the internet. Econometrica, 77(2), 427–452.CrossRefGoogle Scholar
  32. Fader, P. S., Hardie, B. G. S., & Huang, C.-Y. (2004). A dynamic changepoint model for new product sales forecasting. Marketing Science, 23(1), 50–65.CrossRefGoogle Scholar
  33. Faulhaber, G. R., & Boyd, J. (1989). Optimal new-product pricing in regulated industries. Journal of Regulatory Economics, 1(4), 341–358.CrossRefGoogle Scholar
  34. Ferrell, O. C., & Hartline, M. D. (2011). Marketing strategy, text and cases (5th ed.). USA: Cengage Learning.Google Scholar
  35. Fishburn, P. C. (1970). Utility theory for decision making. New York: Wiley.Google Scholar
  36. Forgang, W. G., & Einnolf, K. W. (2006). Management economics: An accelerated approach. New York: M. E. Sharpe Inc.Google Scholar
  37. Giordano, R., & Vurro, M. (2010). Fuzzy cognitive map to support conflict analysis in drought management. In M. Glykas (Ed.), Fuzzy cognitive maps (vol. 247, pp. 403–425), Studies in fuzziness and soft computing Berlin Heidelberg: Springer.Google Scholar
  38. Glykas, M. (2012). Performance measurement scenarios with fuzzy cognitive strategic maps. International Journal of Information Management, 32(2), 182–195.CrossRefGoogle Scholar
  39. Gold, N., Mohan, A., Knight, C., & Munro, M. (2004). Understanding service-oriented software. IEEE Software, 21(2), 71–77.CrossRefGoogle Scholar
  40. Grabisch, M., & Labreuche, C. (2010). A decade of application of the Choquet and Sugeno integrals in multi-criteria decision aid. Annals of Operations Research, 175(1), 247–286.CrossRefGoogle Scholar
  41. Haji, A., & Assadi, M. (2009). Fuzzy expert systems and challenge of new product pricing. Computers & Industrial Engineering, 56(2), 616–630.CrossRefGoogle Scholar
  42. Hamilton, J., & Selen, W. (2005). An e-enabled service value network for the pharmaceutical industry. In Proceedings of the International Conference on Electronic Business (ICEB), pp. 267–273.Google Scholar
  43. Horsky, D. (1990). A diffusion model incorporating product benefits, price, income and information. Marketing Science, 9(4), 342–365.CrossRefGoogle Scholar
  44. Huang, C.-Y., Tzeng, G.-H., Lai, C.-Y., & Chuang, C.-P. (2010). Defining pricing strategies for silicon intellectual properties of late coming providers by a hybrid MCDM framework. International Journal of Information Systems for Logistics and Management, 5(2), 47–63.Google Scholar
  45. Huang, H.-Z., Liu, Z.-J., & Murthy, D. N. P. (2007). Optimal reliability, warranty and price for new products. IIE Transactions, 39(8), 819–827.CrossRefGoogle Scholar
  46. Hui, K. L., & Chau, P. Y. K. (2002). Classifying digital products. Communications of the ACM, 45(6), 73–79.CrossRefGoogle Scholar
  47. Hultink, E. J., Griffin, A., Hart, S., & Robben, H. S. J. (1997). Industrial new product launch strategies and product development performance. Journal of Product Innovation Management, 14(4), 243–257.CrossRefGoogle Scholar
  48. Hwang, C. L., & Yoon, K. (1981). Multiple attribute decision making, methods and applications (vol. 186), Lecture Notes in Economics and Mathematical Systems New York: Springer.Google Scholar
  49. Kahn, K. B. (2006). New product forecasting. New York: M.E. Sharpe.Google Scholar
  50. Kahraman, C., Ateş, N. Y., Çevik, S., Gülbay, M., & Erdoan, S. A. (2007a). Hierarchical fuzzy TOPSIS model for selection among logistics information technologies. Journal of Enterprise Information Management, 20(2), 143–168.CrossRefGoogle Scholar
  51. Kahraman, C., Büyüközkan, G., & Ateş, N. Y. (2007b). A two phase multi-attribute decision-making approach for new product introduction. Information Sciences, 177(7), 1567–1582.CrossRefGoogle Scholar
  52. Kalish, S. (1983). Monopolist pricing with dynamic demand and production cost. Marketing Science, 2(2), 135–159.CrossRefGoogle Scholar
  53. Kalish, S. (1985). A new product adoption model with price, advertising, and uncertainty. Management Science, 31(12), 1569–1585.CrossRefGoogle Scholar
  54. Kalish, S. (1988). Pricing new products from birth to decline: An expository review. In T. Devinney (Ed.), Issues in pricing: Theory and research (pp. 119–144). Lexington, MA: Lexington Books.Google Scholar
  55. Keeney, R. L. (1988). Building models of values. European Journal of Operational Research, 37(2), 149–157.CrossRefGoogle Scholar
  56. Kim, B., & Park, S. (2008). Optimal pricing, EOL (end of life) warranty, and spare parts manufacturing strategy amid product transition. European Journal of Operational Research, 188(3), 723–745.CrossRefGoogle Scholar
  57. Kopalle, P., Biswas, D., Chintagunta, P. K., Fan, J., Pauwels, K., Ratchford, B. T., et al. (2009). Retailer pricing and competitive effects. Journal of Retailing, 85(1), 56–70.CrossRefGoogle Scholar
  58. Kornish, L. J. (2001). Pricing for a durable-goods monopolist under rapid sequential innovation. Management Science, 47(11), 1552–1561.CrossRefGoogle Scholar
  59. Kosko, B. (1986). Fuzzy cognitive maps. International Journal of Man-Machine Studies, 24(1), 65–75.CrossRefGoogle Scholar
  60. Kosko, B. (1997). Fuzzy engineering. Upper Saddle River, New Jersey: Prentice Hall.Google Scholar
  61. Krantz, D. (1964). Conjoint measurement: The Luce-Tukey axiomatization and some extensions. Journal of Mathematical Psychology, 1(2), 248–277.CrossRefGoogle Scholar
  62. Krishnan, T. V., Bass, F. M., & Jain, D. C. (1999). Optimal pricing strategy for new products. Management Science, 45(12), 1650–1663.CrossRefGoogle Scholar
  63. Kristensson, P., Matthing, J., & Johansson, N. (2008). Key strategies for the successful involvement of customers in the co-creation of new technology-based services. International Journal of Service Industry Management, 19(4), 474–491.CrossRefGoogle Scholar
  64. Lederer, P. J., & Li, L. (1997). Pricing, production, scheduling, and delivery-time competition. Operations Research, 45(3), 407–420.CrossRefGoogle Scholar
  65. Liao, C.-N. (2011). Fuzzy analytical hierarchy process and multi-segment goal programming applied to new product segmented under price strategy. Computers & Industrial Engineering, 61(3), 831–841.CrossRefGoogle Scholar
  66. Linde, F. (2009). Pricing information goods. Journal of Product & Brand Management, 18(5), 379–384.CrossRefGoogle Scholar
  67. Mahdavi, I., Asadian, N., & Khavarpour, M. (2007) A two phase multi-attribute decision-making approach for supplier selection in supply chain management. In 37th international conference on computers and industrial engineering, vol. 1, pp. 519–529.Google Scholar
  68. Marichal, J. L. (2000). An axiomatic approach of the discrete Choquet integral as a tool to aggregate interacting criteria. IEEE Transactions on Fuzzy Systems, 8(6), 800–807.CrossRefGoogle Scholar
  69. Marichal, J. L. (2004). Tolerant or intolerant character of interacting criteria in aggregation by the Choquet integral. European Journal of Operational Research, 155(3), 771–791.CrossRefGoogle Scholar
  70. Miller, C. E. (2011). Pricing in the digital age. In T. J. Strader (Ed.), Digital product management, technology and practice: Interdisciplinary perspectives (pp. 53–72). Hershey, PA: IGI Global. doi:10.4018/978-1-61692-877-3.ch004.
  71. Monroe, K. B., & Bitta, A. J. D. (1978). Models for pricing decisions. Journal of Marketing Research, 15(3), 413–428.CrossRefGoogle Scholar
  72. Myers, M. B., Cavusgil, S. T., & Diamantopoulos, A. (2002). Antecedents and actions of export pricing strategy: A conceptual framework and research propositions. European Journal of Marketing, 36(1/2), 159–188.CrossRefGoogle Scholar
  73. Nagle, T. T., & Holden, R. K. (1995). The strategy and tactics of pricing (vol. 29). Englewood Cliffs, NJ: Prentice-Hall.Google Scholar
  74. Narasimhan, C. (1989). Incorporating consumer price expectations in diffusion models. Marketing Science, 8(4), 343–357.CrossRefGoogle Scholar
  75. Odlyzko, A. (2001). Internet pricing and the history of communications. Computer Networks, 36(5–6), 493–517.CrossRefGoogle Scholar
  76. Opricovic, S., & Tzeng, G.-H. (2003). Defuzzification within a multicriteria decision model. International Journal of Uncertainty, Fuzziness and Knowledge-Based Systems, 11(05), 635–652.CrossRefGoogle Scholar
  77. Opricovic, S., & Tzeng, G.-H. (2004). Compromise solution by MCDM methods: A comparative analysis of VIKOR and TOPSIS. European Journal of Operational Research, 156(2), 445–455.CrossRefGoogle Scholar
  78. Oxenfeldt, A. R. (1960). A multi-stage approach to pricing. Hardvard Business Review, 38, 125–133.Google Scholar
  79. Oxenfeldt, A. R. (1966). Product line pricing. Hardvard Business Review, 44, 137–144.Google Scholar
  80. Oxenfeldt, A. R. (1973). A decision-making structure for price decisions. Journal of Marketing, 37, 48–53.CrossRefGoogle Scholar
  81. Ozer, M. (1999). A survey of new product evaluation models. Journal of Product Innovation Management, 16(1), 77–94.CrossRefGoogle Scholar
  82. Paksoy, T., Pehlivan, N. Y., & Kahraman, C. (2012). Organizational strategy development in distribution channel management using fuzzy AHP and hierarchical fuzzy TOPSIS. Expert Systems with Applications, 39(3), 2822–2841.CrossRefGoogle Scholar
  83. Pangarkar, A. M., & Kirkwood, T. (2008). Strategic alignment: Linking your learning strategy to the balanced scorecard. Industrial and Commercial Training, 40(2), 95–101.CrossRefGoogle Scholar
  84. Papageorgiou, E. I. (2011). A new methodology for decisions in medical informatics using fuzzy cognitive maps based on fuzzy rule-extraction techniques. Applied Soft Computing, 11(1), 500–513.CrossRefGoogle Scholar
  85. Papageorgiou, E. I. (2012). Learning algorithms for fuzzy cognitive maps—A review study. IEEE Transactions on Systems, Man, and Cybernetics, Part C: Applications and Reviews, 42(2), 150–163.CrossRefGoogle Scholar
  86. Papageorgiou, E. I., & Salmeron, J. L. (2013). A review of fuzzy cognitive maps research during the last decade. IEEE Transactions on Fuzzy Systems, 21(1), 66–79.CrossRefGoogle Scholar
  87. Perçin, S. (2008). Fuzzy multi-criteria risk-benefit analysis of business process outsourcing (BPO). Information Management and Computer Security, 16(3), 213–234.CrossRefGoogle Scholar
  88. Petrin, A. (2002). Quantifying the benefits of new products: The case of the minivan. Journal of Political Economy, 110, 705–729.CrossRefGoogle Scholar
  89. Pienkos, J. T. (2004). The patent guidebook. Chicago, IL: American Bar Association.Google Scholar
  90. Raman, K., & Chatterjee, R. (1995). Optimal monopolist pricing under demand uncertainty in dynamic markets. Management Science, 41(1), 144–162.CrossRefGoogle Scholar
  91. Rao, S. K. (2000). A marketing decision support system for pricing new pharmaceutical products. Marketing Research, 12, 22–29.Google Scholar
  92. Rao, V. R. (1984). Pricing research in marketing: The state of the art. The Journal of Business, 57(1), 39–60.CrossRefGoogle Scholar
  93. Robinson, B., & Lakhani, C. (1975). Dynamic price models for new-product planning. Management Science, 21(10), 1113–1122.CrossRefGoogle Scholar
  94. Rodriguez-Repiso, L., Setchi, R., & Salmeron, J. L. (2007). Modelling IT projects success: Emerging methodologies reviewed. Technovation, 27(10), 582–594.CrossRefGoogle Scholar
  95. Roshandel, J., Miri-Nargesi, S. S., & Hatami-Shirkouhi, L. (2013). Evaluating and selecting the supplier in detergent production industry using hierarchical fuzzy TOPSIS. Applied Mathematical Modelling, 37(24), 10170–10181.CrossRefGoogle Scholar
  96. Rouse, P., & Swales, R. (2006). Pricing public health care services using DEA: Methodology versus politics. Annals of Operations Research, 145(1), 265–280.CrossRefGoogle Scholar
  97. Roy, B. (1990). The outranking approach and the foundations of electre methods. In C. Bana e Costa (Ed.), Readings in multiple criteria decision aid (pp. 155–183). Berlin Heidelberg: Springer.CrossRefGoogle Scholar
  98. Saaksvuori, A., & Immonen, A. (2005). Product lifecycle management. Berlin: Springer.Google Scholar
  99. Saaty, T. L. (1980). The analytic hierarchy process. New York: McGraw-Hill.Google Scholar
  100. Salmeron, J. L., Vidal, R., & Mena, A. (2012). Ranking fuzzy cognitive map based scenarios with TOPSIS. Expert Systems with Applications, 39(3), 2443–2450.CrossRefGoogle Scholar
  101. Shiau, T.-A., & Liu, J.-S. (2013). Developing an indicator system for local governments to evaluate transport sustainability strategies. Ecological Indicators, 34, 361–371.CrossRefGoogle Scholar
  102. Stark, J. (2011). Product lifecycle management. In R. Rajkumar (Ed.), Product lifecycle management. Decision engineering (pp. 1-16). London: Springer.Google Scholar
  103. Stylios, C. D., & Groumpos, P. P. (2004). Modeling complex systems using fuzzy cognitive maps. IEEE Transactions on Systems, Man and Cybernetics, Part A: Systems and Humans, 34(1), 155–162.CrossRefGoogle Scholar
  104. Sundararajan, A. (2004). Nonlinear pricing of information goods. Management Science, 50(12), 1660–1673.CrossRefGoogle Scholar
  105. Tellis, G. J. (1986). Beyond the many faces of price: An integration of pricing strategies. Journal of Marketing, 50(4), 146–160.CrossRefGoogle Scholar
  106. Teng, J.-T., & Thompson, G. L. (1996). Optimal strategies for general price-quality decision models of new products with learning production costs. European Journal of Operational Research, 93(3), 476–489.CrossRefGoogle Scholar
  107. Tolga, A. Ç. (2008). Fuzzy multicriteria R&D project selection with a real options valuation model. Journal of Intelligent and Fuzzy Systems, 19(4–5), 359–371.Google Scholar
  108. Uysal, F., & Tosun, O. (2012). Fuzzy TOPSIS-based computerized maintenance management system selection. Journal of Manufacturing Technology Management, 23(2), 212–228.CrossRefGoogle Scholar
  109. Verma, R., & Pullman, M. E. (1998). An analysis of the supplier selection process. Omega, 26(6), 739–750.CrossRefGoogle Scholar
  110. Voelckner, F. (2006). An empirical comparison of methods for measuring consumers’ willingness to pay. Marketing Letters, 17(2), 137–149.CrossRefGoogle Scholar
  111. Wang, X., & Chan, H. K. (2013). A hierarchical fuzzy TOPSIS approach to assess improvement areas when implementing green supply chain initiatives. International Journal of Production Research, 51(10), 3117–3130.CrossRefGoogle Scholar
  112. Wedley, W. C., Schoner, B., & Choo, E. U. (1993). Clustering, dependence and ratio scales in AHP: Rank reversals and incorrect priorities with a single criterion. Journal of Multi-Criteria Decision Analysis, 2(3), 145–158.CrossRefGoogle Scholar
  113. Wei, J., & Zhao, J. (2014). Pricing decisions for substitutable products with horizontal and vertical competition in fuzzy environments. Annals of Operations Research, 1–24. doi:10.1007/s10479-014-1541-6.
  114. Wei, Z., Lu, L., & Yanchun, Z. (2008). Using fuzzy cognitive time maps for modeling and evaluating trust dynamics in the virtual enterprises. Expert Systems with Applications, 35(4), 1583–1592.CrossRefGoogle Scholar
  115. Xirogiannis, G., Stefanou, J., & Glykas, M. (2004). A fuzzy cognitive map approach to support urban design. Expert Systems with Applications, 26(2), 257–268.CrossRefGoogle Scholar
  116. Yenipazarli, A. (2015). A road map to new product success: Warranty, advertisement and price. Annals of Operations Research, 226(1), 669–694.CrossRefGoogle Scholar
  117. Zimmerer, T. W., & Scarborough, N. M. (1994). Essentials of small business management. New York: Macmillan.Google Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  • Adil Baykasoğlu
    • 1
  • İlker Gölcük
    • 1
    • 2
  • Derya Eren Akyol
    • 1
  1. 1.Department of Industrial Engineering, Faculty of EngineeringDokuz Eylül UniversityIzmirTurkey
  2. 2.The Graduate School of Natural and Applied SciencesDokuz Eylül UniversityIzmirTurkey

Personalised recommendations