Skip to main content
Log in

A fuzzy multiple-attribute decision making model to evaluate new product pricing strategies

  • Published:
Annals of Operations Research Aims and scope Submit manuscript

Abstract

The aim of this paper is to provide a new fuzzy Multiple-Attribute Decision Making model for evaluating product pricing strategies. The problem is structured in a hierarchical setting. Possible interactions and interdependencies among hierarchically structured criteria are taken into consideration. Since new product pricing decisions entail decision makers’ uncertain judgments concerning many interacting factors, Fuzzy Cognitive Maps are employed to analyze causal dependencies among attributes. Finally, decision makers’ linguistic assessments are transformed into ranking orders of the pricing strategies using the Technique for Order Preference by Similarity to Ideal Solution. The proposed model is implemented in a Turkish software company. The case study has showed that the proposed model is practical and easy to apply. The proposed model can be incorporated into marketing strategies of wide variety of new products.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  • Adams, W. J., & Yellen, J. L. (1976). Commodity bundling and the burden of monopoly. The Quarterly Journal of Economics, 90(3), 475–498.

    Article  Google Scholar 

  • Akan, M., Ata, B., & Savaşkan-Ebert, R. C. (2013). Dynamic pricing of remanufacturable products under demand substitution: A product life cycle model. Annals of Operations Research, 211(1), 1–25.

    Article  Google Scholar 

  • Akgun, I., Kandakoglu, A., & Ozok, A. F. (2010). Fuzzy integrated vulnerability assessment model for critical facilities in combating the terrorism. Expert Systems with Applications, 37(5), 3561–3573.

    Article  Google Scholar 

  • Allen, T. T., & Maybin, K. M. (2004). Using focus group data to set new product prices. Journal of Product & Brand Management, 13(1), 15–24.

    Article  Google Scholar 

  • Allenby, G. M., & Rossi, P. E. (1998). Marketing models of consumer heterogeneity. Journal of Econometrics, 89(1–2), 57–78.

    Article  Google Scholar 

  • Andreou, A. S., Mateou, N. H., & Zombanakis, G. A. (2005). Soft computing for crisis management and political decision making: The use of genetically evolved fuzzy cognitive maps. Soft Computing, 9(3), 194–210.

    Article  Google Scholar 

  • Bao, Q., Ruan, D., Shen, Y., Hermans, E., & Janssens, D. (2012). Improved hierarchical fuzzy TOPSIS for road safety performance evaluation. Knowledge-Based Systems, 32, 84–90.

    Article  Google Scholar 

  • Bass, F. M., & Bultez, A. V. (1982). Technical note—A note on optimal strategic pricing of technological innovations. Marketing Science, 1(4), 371–378.

    Article  Google Scholar 

  • Baykasoğlu, A., & Gölcük, İ. (2015). Development of a novel multiple-attribute decision making model via fuzzy cognitive maps and hierarchical fuzzy TOPSIS. Information Sciences, 301, 75–98.

    Article  Google Scholar 

  • Baykasoğlu, A., Kaplanoğlu, V., Durmuşoğlu, Z. D. U., & Şahin, C. (2013). Integrating fuzzy DEMATEL and fuzzy hierarchical TOPSIS methods for truck selection. Expert Systems with Applications, 40(3), 899–907.

    Article  Google Scholar 

  • Benlian, A., & Hess, T. (2011). Opportunities and risks of software-as-a-service: Findings from a survey of IT executives. Decision Support Systems, 52(1), 232–246.

    Article  Google Scholar 

  • Bertolini, M., & Bevilacqua, M. (2010). Fuzzy cognitive maps for human reliability analysis in production systems. In C. Kahraman, & M. Yavuz (Eds.), Production Engineering and Management under Fuzziness (vol. 252, pp. 381–415, Studies in Fuzziness and Soft Computing): Springer, Berlin Heidelberg.

  • Besanko, D., & Winston, W. L. (1990). Optimal price skimming by a monopolist facing rational consumers. Management Science, 36(5), 555–567.

    Article  Google Scholar 

  • Biloslavo, R., & Grebenc, A. (2012). Integrating group delphi, analytic hierarchy process and dynamic fuzzy cognitive maps for a climate warning scenario. Kybernetes, 41(3), 414–428.

    Article  Google Scholar 

  • Binkley, J. K., & Connor, J. M. (1998). Grocery market pricing and the new competitive environment. Journal of Retailing, 74(2), 273–294.

    Article  Google Scholar 

  • Bojadziev, G., & Bojadziev, M. (2007). Fuzzy logic for business, finance, and management (vol. 5), Advances in fuzzy systems—applications and theory Cleveland, OH: World Scientific Publishing.

  • Campbell-Kelly, M. (2009). Historical reflections the rise, fall, and resurrection of software as a service. Communications of the ACM, 52(5), 28–30.

    Article  Google Scholar 

  • Cavusoglu, H., Mishra, B., & Raghunathan, S. (2004). A model for evaluating IT security investments. Communications of the ACM, 47(7), 87–92.

    Article  Google Scholar 

  • Chatterjee, R. (2009). Strategic pricing of new products and services. In V. R. Rao (Ed.), Handbook of pricing research in marketing. UK: Edward Elgar.

    Google Scholar 

  • Chatterjee, R., Eliashberg, J., & Rao, V. R. (2000). Dynamic models incorporating competition. In V. Mahajan, E. Muller, & Y. Wind (Eds.), New-product diffusion models (pp. 165–205). Boston: Kluwer Academic Publishers.

    Google Scholar 

  • Chen, Y.-M., & Jain, D. C. (1992). Dynamic monopoly pricing under a poisson-type uncertain demand. The Journal of Business, 65(4), 593–614.

    Article  Google Scholar 

  • Corrente, S., Greco, S., & Słowiński, R. (2013). Multiple criteria hierarchy process with ELECTRE and PROMETHEE. Omega, 41(5), 820–846.

    Article  Google Scholar 

  • Cox, E., & O’Hagan, M. (1998). The fuzzy systems handbook. San Diego: USA Morgan Kaufmann.

    Google Scholar 

  • Dean, J. (1976). Pricing policies for new products. Hardvard Business Review, 28, 141–153.

    Google Scholar 

  • Dereli, T., & Baykasoğlu, A. (2007). Toplam Marka Yönetimi (total brand management). Istanbul: Hayat Publishing. (in Turkish).

    Google Scholar 

  • Dewar, R. D., & Dutton, J. E. (1986). The adoption of radical and incremental innovations: An empirical analysis. Management Science, 32(11), 1422–1433.

    Article  Google Scholar 

  • Dockner, E. J., & Gaunersdorfer, A. (1996). Strategic new product pricing when demand obeys saturation effects. European Journal of Operational Research, 90(3), 589–598.

    Article  Google Scholar 

  • Dolan, R. J., & Jeuland, A. P. (1981). Experience curves and dynamic demand models: Implications for optimal pricing strategies. Journal of Marketing, 45(1), 52–62.

    Article  Google Scholar 

  • Dratler, J. (1994). Licensing of intellectual property. New York: Law Journal Press.

    Google Scholar 

  • Dyer, J. S. (2005). Maut—multiattribute utility theory. In Multiple criteria decision analysis: State of the art surveys (vol. 78, pp. 265–292, International Series in Operations Research & Management Science). New York: Springer.

  • Ellison, G., & Ellison, S. F. (2009). Search, obfuscation, and price elasticities on the internet. Econometrica, 77(2), 427–452.

    Article  Google Scholar 

  • Fader, P. S., Hardie, B. G. S., & Huang, C.-Y. (2004). A dynamic changepoint model for new product sales forecasting. Marketing Science, 23(1), 50–65.

    Article  Google Scholar 

  • Faulhaber, G. R., & Boyd, J. (1989). Optimal new-product pricing in regulated industries. Journal of Regulatory Economics, 1(4), 341–358.

    Article  Google Scholar 

  • Ferrell, O. C., & Hartline, M. D. (2011). Marketing strategy, text and cases (5th ed.). USA: Cengage Learning.

    Google Scholar 

  • Fishburn, P. C. (1970). Utility theory for decision making. New York: Wiley.

    Google Scholar 

  • Forgang, W. G., & Einnolf, K. W. (2006). Management economics: An accelerated approach. New York: M. E. Sharpe Inc.

    Google Scholar 

  • Giordano, R., & Vurro, M. (2010). Fuzzy cognitive map to support conflict analysis in drought management. In M. Glykas (Ed.), Fuzzy cognitive maps (vol. 247, pp. 403–425), Studies in fuzziness and soft computing Berlin Heidelberg: Springer.

  • Glykas, M. (2012). Performance measurement scenarios with fuzzy cognitive strategic maps. International Journal of Information Management, 32(2), 182–195.

    Article  Google Scholar 

  • Gold, N., Mohan, A., Knight, C., & Munro, M. (2004). Understanding service-oriented software. IEEE Software, 21(2), 71–77.

    Article  Google Scholar 

  • Grabisch, M., & Labreuche, C. (2010). A decade of application of the Choquet and Sugeno integrals in multi-criteria decision aid. Annals of Operations Research, 175(1), 247–286.

    Article  Google Scholar 

  • Haji, A., & Assadi, M. (2009). Fuzzy expert systems and challenge of new product pricing. Computers & Industrial Engineering, 56(2), 616–630.

    Article  Google Scholar 

  • Hamilton, J., & Selen, W. (2005). An e-enabled service value network for the pharmaceutical industry. In Proceedings of the International Conference on Electronic Business (ICEB), pp. 267–273.

  • Horsky, D. (1990). A diffusion model incorporating product benefits, price, income and information. Marketing Science, 9(4), 342–365.

    Article  Google Scholar 

  • Huang, C.-Y., Tzeng, G.-H., Lai, C.-Y., & Chuang, C.-P. (2010). Defining pricing strategies for silicon intellectual properties of late coming providers by a hybrid MCDM framework. International Journal of Information Systems for Logistics and Management, 5(2), 47–63.

    Google Scholar 

  • Huang, H.-Z., Liu, Z.-J., & Murthy, D. N. P. (2007). Optimal reliability, warranty and price for new products. IIE Transactions, 39(8), 819–827.

    Article  Google Scholar 

  • Hui, K. L., & Chau, P. Y. K. (2002). Classifying digital products. Communications of the ACM, 45(6), 73–79.

    Article  Google Scholar 

  • Hultink, E. J., Griffin, A., Hart, S., & Robben, H. S. J. (1997). Industrial new product launch strategies and product development performance. Journal of Product Innovation Management, 14(4), 243–257.

    Article  Google Scholar 

  • Hwang, C. L., & Yoon, K. (1981). Multiple attribute decision making, methods and applications (vol. 186), Lecture Notes in Economics and Mathematical Systems New York: Springer.

  • Kahn, K. B. (2006). New product forecasting. New York: M.E. Sharpe.

    Google Scholar 

  • Kahraman, C., Ateş, N. Y., Çevik, S., Gülbay, M., & Erdoan, S. A. (2007a). Hierarchical fuzzy TOPSIS model for selection among logistics information technologies. Journal of Enterprise Information Management, 20(2), 143–168.

    Article  Google Scholar 

  • Kahraman, C., Büyüközkan, G., & Ateş, N. Y. (2007b). A two phase multi-attribute decision-making approach for new product introduction. Information Sciences, 177(7), 1567–1582.

    Article  Google Scholar 

  • Kalish, S. (1983). Monopolist pricing with dynamic demand and production cost. Marketing Science, 2(2), 135–159.

    Article  Google Scholar 

  • Kalish, S. (1985). A new product adoption model with price, advertising, and uncertainty. Management Science, 31(12), 1569–1585.

    Article  Google Scholar 

  • Kalish, S. (1988). Pricing new products from birth to decline: An expository review. In T. Devinney (Ed.), Issues in pricing: Theory and research (pp. 119–144). Lexington, MA: Lexington Books.

    Google Scholar 

  • Keeney, R. L. (1988). Building models of values. European Journal of Operational Research, 37(2), 149–157.

    Article  Google Scholar 

  • Kim, B., & Park, S. (2008). Optimal pricing, EOL (end of life) warranty, and spare parts manufacturing strategy amid product transition. European Journal of Operational Research, 188(3), 723–745.

    Article  Google Scholar 

  • Kopalle, P., Biswas, D., Chintagunta, P. K., Fan, J., Pauwels, K., Ratchford, B. T., et al. (2009). Retailer pricing and competitive effects. Journal of Retailing, 85(1), 56–70.

    Article  Google Scholar 

  • Kornish, L. J. (2001). Pricing for a durable-goods monopolist under rapid sequential innovation. Management Science, 47(11), 1552–1561.

    Article  Google Scholar 

  • Kosko, B. (1986). Fuzzy cognitive maps. International Journal of Man-Machine Studies, 24(1), 65–75.

    Article  Google Scholar 

  • Kosko, B. (1997). Fuzzy engineering. Upper Saddle River, New Jersey: Prentice Hall.

    Google Scholar 

  • Krantz, D. (1964). Conjoint measurement: The Luce-Tukey axiomatization and some extensions. Journal of Mathematical Psychology, 1(2), 248–277.

    Article  Google Scholar 

  • Krishnan, T. V., Bass, F. M., & Jain, D. C. (1999). Optimal pricing strategy for new products. Management Science, 45(12), 1650–1663.

    Article  Google Scholar 

  • Kristensson, P., Matthing, J., & Johansson, N. (2008). Key strategies for the successful involvement of customers in the co-creation of new technology-based services. International Journal of Service Industry Management, 19(4), 474–491.

    Article  Google Scholar 

  • Lederer, P. J., & Li, L. (1997). Pricing, production, scheduling, and delivery-time competition. Operations Research, 45(3), 407–420.

    Article  Google Scholar 

  • Liao, C.-N. (2011). Fuzzy analytical hierarchy process and multi-segment goal programming applied to new product segmented under price strategy. Computers & Industrial Engineering, 61(3), 831–841.

    Article  Google Scholar 

  • Linde, F. (2009). Pricing information goods. Journal of Product & Brand Management, 18(5), 379–384.

    Article  Google Scholar 

  • Mahdavi, I., Asadian, N., & Khavarpour, M. (2007) A two phase multi-attribute decision-making approach for supplier selection in supply chain management. In 37th international conference on computers and industrial engineering, vol. 1, pp. 519–529.

  • Marichal, J. L. (2000). An axiomatic approach of the discrete Choquet integral as a tool to aggregate interacting criteria. IEEE Transactions on Fuzzy Systems, 8(6), 800–807.

    Article  Google Scholar 

  • Marichal, J. L. (2004). Tolerant or intolerant character of interacting criteria in aggregation by the Choquet integral. European Journal of Operational Research, 155(3), 771–791.

    Article  Google Scholar 

  • Miller, C. E. (2011). Pricing in the digital age. In T. J. Strader (Ed.), Digital product management, technology and practice: Interdisciplinary perspectives (pp. 53–72). Hershey, PA: IGI Global. doi:10.4018/978-1-61692-877-3.ch004.

  • Monroe, K. B., & Bitta, A. J. D. (1978). Models for pricing decisions. Journal of Marketing Research, 15(3), 413–428.

    Article  Google Scholar 

  • Myers, M. B., Cavusgil, S. T., & Diamantopoulos, A. (2002). Antecedents and actions of export pricing strategy: A conceptual framework and research propositions. European Journal of Marketing, 36(1/2), 159–188.

    Article  Google Scholar 

  • Nagle, T. T., & Holden, R. K. (1995). The strategy and tactics of pricing (vol. 29). Englewood Cliffs, NJ: Prentice-Hall.

  • Narasimhan, C. (1989). Incorporating consumer price expectations in diffusion models. Marketing Science, 8(4), 343–357.

    Article  Google Scholar 

  • Odlyzko, A. (2001). Internet pricing and the history of communications. Computer Networks, 36(5–6), 493–517.

    Article  Google Scholar 

  • Opricovic, S., & Tzeng, G.-H. (2003). Defuzzification within a multicriteria decision model. International Journal of Uncertainty, Fuzziness and Knowledge-Based Systems, 11(05), 635–652.

    Article  Google Scholar 

  • Opricovic, S., & Tzeng, G.-H. (2004). Compromise solution by MCDM methods: A comparative analysis of VIKOR and TOPSIS. European Journal of Operational Research, 156(2), 445–455.

    Article  Google Scholar 

  • Oxenfeldt, A. R. (1960). A multi-stage approach to pricing. Hardvard Business Review, 38, 125–133.

    Google Scholar 

  • Oxenfeldt, A. R. (1966). Product line pricing. Hardvard Business Review, 44, 137–144.

    Google Scholar 

  • Oxenfeldt, A. R. (1973). A decision-making structure for price decisions. Journal of Marketing, 37, 48–53.

    Article  Google Scholar 

  • Ozer, M. (1999). A survey of new product evaluation models. Journal of Product Innovation Management, 16(1), 77–94.

    Article  Google Scholar 

  • Paksoy, T., Pehlivan, N. Y., & Kahraman, C. (2012). Organizational strategy development in distribution channel management using fuzzy AHP and hierarchical fuzzy TOPSIS. Expert Systems with Applications, 39(3), 2822–2841.

    Article  Google Scholar 

  • Pangarkar, A. M., & Kirkwood, T. (2008). Strategic alignment: Linking your learning strategy to the balanced scorecard. Industrial and Commercial Training, 40(2), 95–101.

    Article  Google Scholar 

  • Papageorgiou, E. I. (2011). A new methodology for decisions in medical informatics using fuzzy cognitive maps based on fuzzy rule-extraction techniques. Applied Soft Computing, 11(1), 500–513.

    Article  Google Scholar 

  • Papageorgiou, E. I. (2012). Learning algorithms for fuzzy cognitive maps—A review study. IEEE Transactions on Systems, Man, and Cybernetics, Part C: Applications and Reviews, 42(2), 150–163.

    Article  Google Scholar 

  • Papageorgiou, E. I., & Salmeron, J. L. (2013). A review of fuzzy cognitive maps research during the last decade. IEEE Transactions on Fuzzy Systems, 21(1), 66–79.

    Article  Google Scholar 

  • Perçin, S. (2008). Fuzzy multi-criteria risk-benefit analysis of business process outsourcing (BPO). Information Management and Computer Security, 16(3), 213–234.

    Article  Google Scholar 

  • Petrin, A. (2002). Quantifying the benefits of new products: The case of the minivan. Journal of Political Economy, 110, 705–729.

    Article  Google Scholar 

  • Pienkos, J. T. (2004). The patent guidebook. Chicago, IL: American Bar Association.

    Google Scholar 

  • Raman, K., & Chatterjee, R. (1995). Optimal monopolist pricing under demand uncertainty in dynamic markets. Management Science, 41(1), 144–162.

    Article  Google Scholar 

  • Rao, S. K. (2000). A marketing decision support system for pricing new pharmaceutical products. Marketing Research, 12, 22–29.

    Google Scholar 

  • Rao, V. R. (1984). Pricing research in marketing: The state of the art. The Journal of Business, 57(1), 39–60.

    Article  Google Scholar 

  • Robinson, B., & Lakhani, C. (1975). Dynamic price models for new-product planning. Management Science, 21(10), 1113–1122.

    Article  Google Scholar 

  • Rodriguez-Repiso, L., Setchi, R., & Salmeron, J. L. (2007). Modelling IT projects success: Emerging methodologies reviewed. Technovation, 27(10), 582–594.

    Article  Google Scholar 

  • Roshandel, J., Miri-Nargesi, S. S., & Hatami-Shirkouhi, L. (2013). Evaluating and selecting the supplier in detergent production industry using hierarchical fuzzy TOPSIS. Applied Mathematical Modelling, 37(24), 10170–10181.

    Article  Google Scholar 

  • Rouse, P., & Swales, R. (2006). Pricing public health care services using DEA: Methodology versus politics. Annals of Operations Research, 145(1), 265–280.

    Article  Google Scholar 

  • Roy, B. (1990). The outranking approach and the foundations of electre methods. In C. Bana e Costa (Ed.), Readings in multiple criteria decision aid (pp. 155–183). Berlin Heidelberg: Springer.

    Chapter  Google Scholar 

  • Saaksvuori, A., & Immonen, A. (2005). Product lifecycle management. Berlin: Springer.

    Google Scholar 

  • Saaty, T. L. (1980). The analytic hierarchy process. New York: McGraw-Hill.

    Google Scholar 

  • Salmeron, J. L., Vidal, R., & Mena, A. (2012). Ranking fuzzy cognitive map based scenarios with TOPSIS. Expert Systems with Applications, 39(3), 2443–2450.

    Article  Google Scholar 

  • Shiau, T.-A., & Liu, J.-S. (2013). Developing an indicator system for local governments to evaluate transport sustainability strategies. Ecological Indicators, 34, 361–371.

    Article  Google Scholar 

  • Stark, J. (2011). Product lifecycle management. In R. Rajkumar (Ed.), Product lifecycle management. Decision engineering (pp. 1-16). London: Springer.

  • Stylios, C. D., & Groumpos, P. P. (2004). Modeling complex systems using fuzzy cognitive maps. IEEE Transactions on Systems, Man and Cybernetics, Part A: Systems and Humans, 34(1), 155–162.

    Article  Google Scholar 

  • Sundararajan, A. (2004). Nonlinear pricing of information goods. Management Science, 50(12), 1660–1673.

    Article  Google Scholar 

  • Tellis, G. J. (1986). Beyond the many faces of price: An integration of pricing strategies. Journal of Marketing, 50(4), 146–160.

    Article  Google Scholar 

  • Teng, J.-T., & Thompson, G. L. (1996). Optimal strategies for general price-quality decision models of new products with learning production costs. European Journal of Operational Research, 93(3), 476–489.

    Article  Google Scholar 

  • Tolga, A. Ç. (2008). Fuzzy multicriteria R&D project selection with a real options valuation model. Journal of Intelligent and Fuzzy Systems, 19(4–5), 359–371.

    Google Scholar 

  • Uysal, F., & Tosun, O. (2012). Fuzzy TOPSIS-based computerized maintenance management system selection. Journal of Manufacturing Technology Management, 23(2), 212–228.

    Article  Google Scholar 

  • Verma, R., & Pullman, M. E. (1998). An analysis of the supplier selection process. Omega, 26(6), 739–750.

    Article  Google Scholar 

  • Voelckner, F. (2006). An empirical comparison of methods for measuring consumers’ willingness to pay. Marketing Letters, 17(2), 137–149.

    Article  Google Scholar 

  • Wang, X., & Chan, H. K. (2013). A hierarchical fuzzy TOPSIS approach to assess improvement areas when implementing green supply chain initiatives. International Journal of Production Research, 51(10), 3117–3130.

    Article  Google Scholar 

  • Wedley, W. C., Schoner, B., & Choo, E. U. (1993). Clustering, dependence and ratio scales in AHP: Rank reversals and incorrect priorities with a single criterion. Journal of Multi-Criteria Decision Analysis, 2(3), 145–158.

    Article  Google Scholar 

  • Wei, J., & Zhao, J. (2014). Pricing decisions for substitutable products with horizontal and vertical competition in fuzzy environments. Annals of Operations Research, 1–24. doi:10.1007/s10479-014-1541-6.

  • Wei, Z., Lu, L., & Yanchun, Z. (2008). Using fuzzy cognitive time maps for modeling and evaluating trust dynamics in the virtual enterprises. Expert Systems with Applications, 35(4), 1583–1592.

    Article  Google Scholar 

  • Xirogiannis, G., Stefanou, J., & Glykas, M. (2004). A fuzzy cognitive map approach to support urban design. Expert Systems with Applications, 26(2), 257–268.

    Article  Google Scholar 

  • Yenipazarli, A. (2015). A road map to new product success: Warranty, advertisement and price. Annals of Operations Research, 226(1), 669–694.

    Article  Google Scholar 

  • Zimmerer, T. W., & Scarborough, N. M. (1994). Essentials of small business management. New York: Macmillan.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Adil Baykasoğlu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Baykasoğlu, A., Gölcük, İ. & Akyol, D.E. A fuzzy multiple-attribute decision making model to evaluate new product pricing strategies. Ann Oper Res 251, 205–242 (2017). https://doi.org/10.1007/s10479-015-1895-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10479-015-1895-4

Keywords

Navigation