Skip to main content
Log in

An equivalent transformation of multi-objective optimization problems

Annals of Operations Research Aims and scope Submit manuscript

Cite this article


A new equivalent definition of proper efficiency is presented. With the aid of the new definition of properness, a transformation technique is proved to transform a multi-objective problem to a more convenient one. Some conditions are determined under which the original and the transformed problems have the same Pareto and properly efficient solutions. This transformation could be employed for the sake of convexification and simplification in order to improve the computational efficiency for solving the given problem. Moreover, some existing results about the weighted sum method in the multi-objective optimization literature are generalized using the special case of the proposed transformation scheme.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1

Similar content being viewed by others


  • Boyd, S., & Vandenberghe, L. (2004). Convex optimization. Cambridge: Cambridge university press.

    Book  Google Scholar 

  • Chinchuluun, A., Pardalos, P., Migdalas, A., & Pitsoulis, L. (2008). Pareto optimality, game theory and equilibria (Vol. 17). Berlin: Springer.

    Book  Google Scholar 

  • Ehrgott, M. (2005). Multicriteria optimization (Vol. 2). Berlin: Springer.

    Google Scholar 

  • Gearhart, W. (1979). Compromise solutions and estimation of the noninferior set. Journal of Optimization Theory and Applications, 28(1), 29–47.

    Article  Google Scholar 

  • Geoffrion, A. M. (1968). Proper efficiency and the theory of vector maximization. Journal of Mathematical Analysis and Applications, 22(3), 618–630.

    Article  Google Scholar 

  • Goh, C., & Yang, X. (1998). Convexification of a noninferior frontier. Journal of Optimization Theory and Applications, 97(3), 759–768.

    Article  Google Scholar 

  • Guerraggio, A., Molho, E., & Zaffaroni, A. (1994). On the notion of proper efficiency in vector optimization. Journal of Optimization Theory and Applications, 82(1), 1–21.

    Article  Google Scholar 

  • Li, D. (1996). Convexification of a noninferior frontier. Journal of Optimization Theory and Applications, 88(1), 177–196.

    Article  Google Scholar 

  • Li, D., & Biswal, M. (1998). Exponential transformation in convexifying a noninferior frontier and exponential generating method. Journal of Optimization Theory and Applications, 99(1), 183–199.

    Article  Google Scholar 

  • Miettinen, K. (1999). Nonlinear multiobjective optimization. Boston: Kluwer Academic Publishers.

    Google Scholar 

  • Romeijn, H., Dempsey, J., & Li, J. (2004). A unifying framework for multi-criteria fluence map optimization models. Physics in Medicine and Biology, 49(10), 1991–2013.

    Article  Google Scholar 

  • Sawaragi, Y., Nakayama, H., & Tanino, T. (1985). Theory of multiobjective optimization (Vol. 176). New York: Academic Press.

    Google Scholar 

  • Wallenius, J., Dyer, J. S., Fishburn, P. C., Steuer, R. E., Zionts, S., & Deb, K. (2008). Multiple criteria decision making, multiattribute utility theory: Recent accomplishments and what lies ahead. Management Science, 54(7), 1336–1349. doi:10.1287/mnsc.1070.0838.

    Article  Google Scholar 

  • Zarepisheh, M., Khorram, E., & Pardalos, P. (2012). Generating properly efficient points in multi-objective programs by the nonlinear weighted sum scalarization method. Optimization: A Journal of Mathematical Programming and Operations Research, 63(3), 473–486.

  • Zarepisheh, M., Uribe-Sanchez, A. F., Li, N., Jia, X., & Jiang, S. B. (2014). A multicriteria framework with voxel-dependent parameters for radiotherapy treatment plan optimizationa. Medical Physics, 41(4), 041,705. doi:10.1118/1.4866886.

    Article  Google Scholar 

  • Zopounidis, C., & Pardalos, P. (2010). Handbook of multicriteria analysis (Vol. 103). Berlin: Springer.

    Book  Google Scholar 

Download references


P.M. Pardalos is partially supported by NSF, and by LATNA Laboratory, NRU HSE, RF government grant, ag. 11.G34.31.0057.

Author information

Authors and Affiliations


Corresponding author

Correspondence to Masoud Zarepisheh.

Rights and permissions

Reprints and Permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zarepisheh, M., Pardalos, P.M. An equivalent transformation of multi-objective optimization problems. Ann Oper Res 249, 5–15 (2017).

Download citation

  • Published:

  • Issue Date:

  • DOI: