Skip to main content
Log in

An EOQ model for stochastic demand for limited capacity of own warehouse

  • Published:
Annals of Operations Research Aims and scope Submit manuscript

Abstract

This paper deals with an economic order quantity (EOQ) model for uncertain demand when capacity of own warehouse (OW) is limited and the rented warehouse (RW) is considered, if needed. The expected average cost function is formulated for both continuous and discrete distributions of demand function by trading off holding costs and stock out penalty. The model is justified by suitable illustrations for various types of distributions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Adida, E., & Perakis, G. (2010). Dynamic pricing and inventory control: robust vs. stochastic uncertainty models-a computational study. Annals of Operations Research, 181, 125–157.

    Article  Google Scholar 

  • Arcelus, F. J., Pakkala, T. P. M., & Srinivasan, G. (2006). On the interaction between retailers inventory policies and manufacturer trade deals in response to supply-uncertainty occurrences. Annals of Operations Research, 143, 45–58.

    Article  Google Scholar 

  • Artalejo, J. R., Krishnamoorthy, A., & Lopez-Herrero, M. J. (2006). Numerical analysis of (s,S) inventory systems with repeated attempts. Annals of Operations Research, 141, 67–83.

    Article  Google Scholar 

  • Chen, M. S., & Chuang, C. C. (2000). An extended newsboy problem with shortage-level constraints. International Journal of Production Economics, 67, 269–277.

    Article  Google Scholar 

  • Chen, S., & Geunes, J. (2013). Optimal allocation of stock levels and stochastic customer demands to a capacitated resource. Annals of Operations Research, 203, 33–54.

    Article  Google Scholar 

  • Chou, Y. C., & Chung, H. J. (2009). Service-based capacity strategy for manufacturing service duopoly of differentiated prices and lognormal random demand. International Journal of Production Economics, 121, 162–175.

    Article  Google Scholar 

  • Chung, K., & Huang, T. (2007). The optimal retailer’s ordering policies for deteriorating items with limited storage capacity under trade credit financing. International Journal of Production Economics, 106, 127–146.

    Article  Google Scholar 

  • Chung, K., Her, C., & Lin, S. (2009). A two-warehouse inventory model with imperfect quality production processes. Computers & Industrial Engineering, 56, 193–197.

    Article  Google Scholar 

  • Demirag, O. C., Chen, Y. F., & Yang, Y. (2013). Production-inventory control policy under warm/cold state-dependent fixed costs and stochastic demand: partial characterization and heuristics. Annals of Operations Research, 208, 531–556.

    Article  Google Scholar 

  • Federgruen, A., & Wang, M. (2013). Monotonicity properties of a class of stochastic inventory systems. Annals of Operations Research, 208, 155–186.

    Article  Google Scholar 

  • Hariga, M. (2011). Inventory models for multi-warehouse systems under fixed and flexible space leasing contracts. Computers & Industrial Engineering, 61, 744–751.

    Article  Google Scholar 

  • Hsieh, C. C., & Lu, Y. T. (2010). Manufacturer’s return policy in a two-stage supply chain with two risk-averse retailers and random demand. European Journal of Operational Research, 207, 514–523.

    Article  Google Scholar 

  • Jammernegga, W., & Kischkab, P. (2013). The price-setting newsvendor with service and loss constraints. Omega, 41, 326–335.

    Article  Google Scholar 

  • Johansen, S. G., & Thorstenson, A. (1993). Optimal and approximate (Q,r) inventory policies with lost sales and gamma distribution lead time. International Journal of Production Economics, 30(31), 179–194.

    Article  Google Scholar 

  • Kalpakam, S., & Shanthi, S. (2006). A continuous review perishable system with renewal demands. Annals of Operations Research, 143, 211–225.

    Article  Google Scholar 

  • Lee, C., & Hsu, S. (2009). A two-warehouse production model for deteriorating inventory items with time-dependent demands. European Journal of Operational Research, 194, 700–710.

    Article  Google Scholar 

  • Lee, C., & Ma, C. (2000). Optimal inventory policy for deteriorating items with two-warehouse and time-dependent demands. Production Planning & Control, 11, 689–696.

    Article  Google Scholar 

  • Li, J., Enginarlar, E., & Meerkov, S. M. (2004). Random demand satisfaction in unreliable production–inventory–customer systems. Annals of Operations Research, 126, 159–175.

    Article  Google Scholar 

  • Liang, Y., & Zhou, F. (2011). A two-warehouse inventory model for deteriorating items under conditionally permissible delay in payment. Applied Mathematical Modelling, 35, 2221–2231.

    Article  Google Scholar 

  • Liao, J., & Huang, K. (2010). Deterministic inventory model for deteriorating items with trade credit financing and capacity constraints. Computers & Industrial Engineering, 59, 611–618.

    Article  Google Scholar 

  • Liberopoulos, G., Pandelis, D. G., & Hatzikonstantinou, O. (2013). The stochastic economic lot sizing problem for non-stop multi-grade production with sequence-restricted setup changeovers. Annals of Operations Research, 209, 179–205.

    Article  Google Scholar 

  • Okyay, H. K., Karaesmen, F., & Özekici, S. (2013). Newsvendor models with dependent random supply and demand. Optimization Letters. doi:10.1007/s11590-013-0616-7.

    Google Scholar 

  • Petruzzi, N. C., & Dada, M. (1999). Pricing and the news vendor problem: a review with extension. Operations Research, 47, 183–194.

    Article  Google Scholar 

  • Rossi, R., Tarim, S. A., Hnich, B., & Prestwich, S. (2012). Constraint programming for stochastic inventory systems under shortage cost. Annals of Operations Research, 195, 49–71.

    Article  Google Scholar 

  • Sana, S. S. (2011). The stochastic EOQ model with random sales price. Applied Mathematics and Computation, 218, 239–248.

    Article  Google Scholar 

  • Sana, S. S., Mondal, S. K., Sarkar, B. K., & Chaudhuri, K. S. (2011). Two-warehouse inventory model on pricing decision. International Journal of Management Science and Engineering Management, 6, 403–416.

    Google Scholar 

  • Taleizadeh, A. A., Niaki, S. T. A., & Makui, A. (2012). Multiproduct multiple-buyer single vendor supply chain problem with stochastic demand, variable lead-time, and multi-chance constraint. Expert Systems with Applications, 39, 5338–5348.

    Article  Google Scholar 

  • Wang, C. H. (2010). Some remarks on an optimal order quantity and reorder point when supply and demand are uncertain. Computers & Industrial Engineering, 58, 809–813.

    Article  Google Scholar 

  • Xiao, T., Jin, J., Chen, G., Shi, J., & Xie, M. (2010). Ordering wholesale pricing and lead-time decisions in a three-stage supply chain under demand uncertainty. Computers & Industrial Engineering, 59, 840–852.

    Article  Google Scholar 

  • Zhang, G. (2010). The multi-product newsboy problem with supplier quantity discounts and a budget constraint. European Journal of Operational Research, 206, 350–360.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shib Sankar Sana.

Appendices

Appendix A: When qW(≠φ)

Let I r (t) is on-hand inventory at RW, I w (t) is on-hand inventory at OW and I s (t) is shortage level at time t. Here, two cases may arise for uncertain demand (x):

1.1 A.1 Case I: when shortage does not occur, i.e., qx

As the demand over the period [0,T] is x, the demand per unit time is x/T. The stock at Rw is cleared first. Thereafter, the stock at OW is used to adjust the demand of the customers. Now, the on-hand inventories are:

$$I_{r} ( t ) = ( q-W ) - \frac{xt}{T},\quad 0\leq t\leq t_{r}\ \mbox{with } I_{r} ( 0 ) =q-W\ \mbox{and}\ I_{r} ( t_{r} ) =0 $$

and

$$I_{w} ( t ) =W- \frac{x}{T} ( t- t_{r} ),\quad t_{r} \leq t\leq T\ \mbox{with}\ I_{w} (T)\geq0. $$

Using I r (t r )=0, we have t r =(qW)T/x. Now, I w (T)≥0 implies qx. Therefore, the average inventory cost at RW is \(\mathrm{Inv}_{r}^{1} = \frac{c_{r}}{T} \int_{0}^{t_{r}} \{ ( q-W ) - \frac{xt}{T} \} dt = \frac{c_{r}}{2x} ( q-W )^{2}\) and the average inventory cost at OW is

$$\begin{aligned} \mathrm{Inv}_{w}^{1} &= \frac{c_{h}}{T} \biggl[ W t_{r} + \int_{t r}^{T} \biggl\{ W- \frac{x}{T} ( t- t_{r} ) \biggr\} dt \biggr]\\ & = \frac{c_{h}}{T} \biggl[ WT- \frac{x}{2T} \biggl( T- \frac{q-W}{x} T \biggr)^{2} \biggr] = c_{h} \biggl[ W- \frac{x}{2T} \biggl( 1- \frac{q-W}{ x} \biggr)^{2} \biggr]. \end{aligned}$$

1.2 A.2 Case 2: when shortage occurs

In this situation, qx, the on-hand inventories and shortage are as follows:

$$\begin{aligned} & I_{r} ( t ) = ( q-W ) - \frac{xt}{T},\quad 0\leq t\leq t_{r}\ \mbox{with } I_{r} ( 0 ) =q-W\ \mbox{and } I_{r} ( t_{r} ) =0;\\ & I_{w} ( t ) =W- \frac{x}{T} ( t- t_{r} ),\quad t_{r} \leq t\leq t_{r} +t_{w}\ \mbox{with } I_{w} ( t_{r} +t_{w} ) =0 \end{aligned}$$

and

$$I_{s} ( t ) = \frac{x}{T} ( t- t_{r} -t_{w} ),\quad t_{r} +t_{w} \leq t\leq T\ \mbox{with } I_{s} ( T ) \leq0. $$

Now, I r (t r )=0 implies t r =(qW)T/x and I w (t r +t w )=0 implies t w =WT/x. Therefore, the average inventories and shortage are:

$$\begin{aligned} \mathrm{Inv}_{r}^{2} & = \frac{c_{r}}{T} \int _{0}^{t_{r}} \biggl\{ ( q-W ) - \frac{xt}{T} \biggr\} dt = \frac{c_{r}}{2x} ( q-W )^{2},\\ \mathrm{Inv}_{w}^{2} & = \frac{c_{h}}{T} \biggl[ W t_{r} + \int_{t r}^{t_{r} + t_{w}} \biggl\{ W- \frac{x}{T} ( t- t_{r} ) \biggr\} dt \biggr]\\ & = \frac{c_{h}}{T} \biggl[ W ( t_{r} + t_{w} ) - \frac{x}{2T} ( t_{w} )^{2} \biggr] = c_{h} \biggl( q- \frac{W}{2} \biggr) \frac{W}{x} \end{aligned}$$

and

$$\mathrm{Inv}_{s}^{2} = \frac{c_{s}}{T} \int _{ ( t r +t w )}^{T} \frac{x}{T} ( t- t_{r} -t_{w} ) dt = \frac{c_{s}}{2} x \biggl( 1- \frac{q}{x} \biggr)^{2}. $$

The expected average cost, combining case 1 and case 2, we have

$$\begin{aligned} \mathit{EAC}_{1} ( q ) & = \int_{0}^{q} \bigl( \mathrm{Inv}_{r}^{1} + \mathrm{Inv}_{w}^{1} \bigr) f ( x ) dx + \int_{q}^{\infty} \bigl( \mathrm{Inv}_{r}^{2} + \mathrm{Inv}_{w}^{2} \bigr) f ( x ) dx + \int_{q}^{\infty} \mathrm{Inv}_{s}^{2} f ( x ) dx\\ & = c_{h} \int_{0}^{q} \biggl\{ W- \frac{x}{2} \biggl( 1- \frac{q-W}{x} \biggr)^{2} \biggr\} dx + c_{h} \int_{q}^{\infty} W \biggl( q- \frac{W}{2} \biggr) \frac{f(x)}{x} dx\\ &\quad {}+ \frac{c_{r}}{2} ( q-W )^{2} \int_{0}^{\infty} \frac{f(x)}{x} dx + \frac{c_{s}}{2} \int_{q}^{\infty} x \biggl( 1- \frac{q}{x} \biggr)^{2} f ( x ) dx. \end{aligned}$$

Appendix B: When qW(≠φ)

In this case, RW is not needed. Let I w (t) is on-hand inventory at OW and I s (t) is shortage level at time t. Here, two cases may arise for uncertain demand (x):

2.1 B.3 Case 1: when shortage does not occur, i.e., qx

As the demand over the period [0,T] is x, the demand per unit time is x/T. The stock at Rw is cleared first. Thereafter, the stock at OW is used to adjust the demand of the customers. Now, the on-hand inventory is:

$$I_{w} ( t ) =q- \frac{xt}{T},\quad 0\leq t\leq T\ \mbox{with } I_{w} (T)\geq0. $$

Now, I w (T)≥0 implies qx. Therefore, the average inventory cost at OW is \(\mathrm{Inv}_{w}^{1} = \frac{c_{h}}{T} [ \int_{0}^{T} \{ q- \frac{xt}{T} \} dt ] = c_{h} [ q- \frac{x}{2} ]\).

2.2 B.4 Case 2: when shortage occurs

In this situation, qx, the on-hand inventory and shortage are as follows:

$$I_{w} ( t ) =q- \frac{xt}{T},\quad 0\leq t\leq t_{w} \ \mbox{with } I_{w} ( t_{w} ) =0 $$

and

$$I_{s} ( t ) = \frac{x}{T} ( t- t_{w} ),\quad t_{w} \leq t\leq T\ \mbox{with } I_{s} ( T ) \leq0. $$

Now, I w (t w )=0 implies t w =qT/x. Therefore, the average inventory and shortage are:

$$\mathrm{Inv}_{w}^{2} = \frac{c_{h}}{T} \biggl[ \int _{0}^{t_{w}} \biggl\{ q- \frac{xt}{T} \biggr\} dt \biggr] = c_{h} \frac{q^{2}}{2x}\quad \mbox{and}\quad \mathrm{Inv}_{s}^{2} = \frac{c_{s}}{T} \int _{t w}^{T} \frac{x}{T} ( t- t_{w} ) dt = \frac{c_{s}}{2} x \biggl( 1- \frac{q}{x} \biggr)^{2}. $$

The expected average cost, combining Case 1 and Case 2, we have

$$\begin{aligned} \mathit{EAC}_{2} ( q ) &= \int_{0}^{q} \bigl( \mathrm{Inv}_{w}^{1} \bigr) f ( x ) dx + \int _{q}^{\infty} \bigl( \mathrm{Inv}_{w}^{2} \bigr) f ( x ) dx + \int_{q}^{\infty} \mathrm{Inv}_{s}^{2} f ( x ) dx\\ & =c_{h} \int_{0}^{q} \biggl( q- \frac{x}{2} \biggr) f ( x ) dx + \frac{c_{h}}{2} q^{2} \int _{q}^{\infty} \frac{f(x)}{x} dx+ \frac{c_{s}}{ 2} \int_{q}^{\infty} x \biggl( 1- \frac{q}{x} \biggr)^{2} f ( x ) dx. \end{aligned}$$

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sana, S.S. An EOQ model for stochastic demand for limited capacity of own warehouse. Ann Oper Res 233, 383–399 (2015). https://doi.org/10.1007/s10479-013-1510-5

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10479-013-1510-5

Keywords

Navigation