Annals of Operations Research

, Volume 233, Issue 1, pp 157–169 | Cite as

Competitiveness based on logistic management: a real case study

  • Fausto Pedro García Márquez
  • Isidro Peña García Pardo
  • Marta Ramos M. Nieto
Article

Abstract

An efficient and effective logistic system is a strategic objective in any productive business. This paper presents a real case study of a routing problem in a food industry firm. This problem is solved as a Vehicle Routing Problem (VRP) using the Neural Network (NN) and Tabu Search (TS) algorithms. A customer selection based on a profitability analysis was carried out. The aforementioned algorithms were then applied, leading to a considerable reduction in the total logistic costs. This resulted in an improvement in the company’s competitiveness and profit.

Keywords

Logistic management Tabu search Neural network Vehicle routing problem 

References

  1. Abdolhamid, T., Somhon, S., & Enkawa, T. (1997). A competitive neural network algorithm for solving vehicle routing problem. Computers & Operations Research, 33, 473–476. Google Scholar
  2. Baldacci, R., Toth, P., & Vigo, D. (2007). Recent advances in vehicle routing exact algorithms. 4OR: A Quarterly Journal of Operations Research, 5, 269–298. CrossRefGoogle Scholar
  3. Christopher, M. (2011). Logistics and supply chain management: creating value-adding networks. Edinburg: Pearson Education. Google Scholar
  4. Decoene, V., & Bruggeman, W. (2006). Strategic alignment and middle-level managers’ motivation in a balanced scorecard setting. International Journal of Operations & Production Management, 26, 429–448. CrossRefGoogle Scholar
  5. Derigs, U., & Reuter, K. (2009). A simple and efficient tabu search heuristic for solving the open vehicle routing problem. Journal of the Operational Research Society, 60, 1658–1669. CrossRefGoogle Scholar
  6. Dorota, K., & Michal, K. (2007). Activity-based costing and customer profitability. Cost and Management, 21, 18–25. Google Scholar
  7. Faulin, J. (2003). Applying MIXALG procedure in a routing problem to optimize food product delivery. Omega, 31, 387–395. CrossRefGoogle Scholar
  8. Faulin, J., Juan, A., Lera, F., & Grasman, C. (2011). Solving the capacitated vehicle routing problem with environmental criteria based on real estimations in road transportation: a case study. Procedia - Social and Behavioral Sciences, 20, 323–334. CrossRefGoogle Scholar
  9. Ganesh, K., Nallathambi, A. S., & Narendran, T. T. (2007). Variants, solution approaches and applications for vehicle routing problems in supply chain: agile framework and comprehensive review. International Journal of Agile Systems and Management, 2, 50–75. CrossRefGoogle Scholar
  10. Gendreau, M., Hertz, A., & Laporte, G. (1994). A tabu search heuristic for the vehicle routing problem. Management Science, 40, 1276–1290. CrossRefGoogle Scholar
  11. Gendreau, M., Laporte, G., & Potvin, J. Y. (2002). Metaheuristics for the VRP. In P. Toth & D. Vigo (Eds.), SIAM monographs on discrete mathematics and applications. The vehicle routing problem (pp. 129–154). Philadelphia: SIAM. CrossRefGoogle Scholar
  12. Giblin, J. (2001). Transportation: the forgotten link in the supply chain. http://www.ascet.com/html.
  13. Gouveia, L., & Pires, J. M. (1999). The asymmetric travelling salesman problem and a reformulation of the Miller–Tucker–Zemlin constraints. European Journal of Operational Research, 112, 134–146. CrossRefGoogle Scholar
  14. Haenlein, M., & Kaplan, A. M. (2011). Evaluating the consequences of abandoning unprofitable customers: a comparison of direct and indirect abandonment strategies. Zeitschrift für Betriebswirtschaft, 81, 77–94. CrossRefGoogle Scholar
  15. Hopfield, J. J., & Tank, D. W. (1985). ‘Neural’ computation of decisions in optimization problems. Biological Cybernetics, 52, 141–152. Google Scholar
  16. Horngren, C. T., Foster, G., & Datar, S. M. (2001). Cost accounting: a managerial emphasis. Upper Saddle River: Prentice Hall. Google Scholar
  17. Hsu, C. L., & Feng, S. (2003). Vehicle routing problem for distributing refrigerated food. Journal of the Eastern Asia Society for Transportation Studies, 5, 2261–2272. Google Scholar
  18. Kaplan, R. S., & Cooper, R. (2000). Cost & effect: using integrated cost systems to drive profitability and performance. Boston: Harvard Business School Press. Google Scholar
  19. Lee, B. K., Kang, K. H., & Lee, Y. H. (2008). Decomposition heuristic to minimize total cost in a multi-level supply chain network. Computers & Industrial Engineering, 54, 945–959. CrossRefGoogle Scholar
  20. Lysons, K., & Gillingham, M. (2005). Purchasing and supply chain management. London: Prentice Hall. Google Scholar
  21. Leung, K. S., Jin, H. D., & Xu, Z. B. (2004). An expanding self-organizing neural network for the traveling salesman problem. Neurocomputing, 62, 267–292. CrossRefGoogle Scholar
  22. Ma, H., Cheang, B., Lim, A., Zhan, L., & Zhu, Y. (2012). An investigation into the vehicle routing problem with time windows and link capacity constraints. Omega, 40, 336–347. CrossRefGoogle Scholar
  23. Miller, C. E., Tucker, A. W., & Zemlin, R. A. (1960). Integer programming formulation of traveling salesman problems. Journal of the Association for Computing Machinery, 7, 326–329. CrossRefGoogle Scholar
  24. Mittal, V., Sarkees, M., & Murshed, F. (2008). The right way to manage unprofitable customers. Harvard Business Review, 86, 95–102. Google Scholar
  25. Peterson, C. (1990). Parallel distributed approaches to combinatorial optimization: benchmark studies on travelling salesman problem. Neural Computation, 2, 261–269. CrossRefGoogle Scholar
  26. Potvin, J. Y., & Robillard, C. (1995). Clustering for vehicle routing with a competitive neural network. Neurocomputing, 8, 125–139. CrossRefGoogle Scholar
  27. Prindezis, N., Kiranoudis, C. T., & Kouris, D. M. (2003). A business-to-business fleet management service provider for central food market enterprises. Journal of Food Engineering, 60, 203–210. CrossRefGoogle Scholar
  28. Prins, C. (2004). A simple and effective evolutionary algorithm for the vehicle routing problem. Computers & Operations Research, 31, 1985–2002. CrossRefGoogle Scholar
  29. Reinaldo, S., Rodrigues, B., & Vázquez, E. (2008). Cost-to-serve measurement and customer profitability analysis. International Journal of Logistics Management, 19, 389–407. CrossRefGoogle Scholar
  30. Rentizelas, A. A., Tolis, A. J., & Tatsiopoulos, I. P. (2009). Logistics issues of biomass: the storage problem and the multi-biomass supply chain. Renewable & Sustainable Energy Reviews, 13, 887–894. CrossRefGoogle Scholar
  31. Sivanandam, S. N., Dumathi, S., & Deepa, S. N. (2006). Introduction to neural networks using MATLAB 6.0. Delhi: McGraw Hill. Google Scholar
  32. Tarantilis, C. D., & Kiranoudis, C. T. (2001). A meta-heuristic algorithm for the efficient distribution of perishable foods. Journal of Food Engineering, 50, 1–9. CrossRefGoogle Scholar
  33. Tarantilis, C. D., & Kiranoudis, C. T. (2002). Distribution of fresh meat. Journal of Food Engineering, 51, 85–91. CrossRefGoogle Scholar
  34. Toth, P., & Vigo, D. (2002). Models, relaxations and exact approaches for the capacitated vehicle routing problem. Discrete Applied Mathematics, 123, 487–512. CrossRefGoogle Scholar
  35. Van Raaij, E. M. (2005). The strategic value of customer profitability analysis. Marketing Intelligence & Planning, 23, 372–381. CrossRefGoogle Scholar
  36. Van Raaij, E. M., Vernooij, J. A., & van Triest, S. (2003). The implementation of customer profitability analysis: a case study. Industrial Marketing Management, 32, 573–583. CrossRefGoogle Scholar
  37. Zeithaml, V. A., Rust, R. T., & Lemon, K. N. (2001). The customer pyramid: creating and serving profitable customers. California Management Review, 43, 118–142. CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • Fausto Pedro García Márquez
    • 1
  • Isidro Peña García Pardo
    • 2
  • Marta Ramos M. Nieto
    • 1
  1. 1.Ingenium Research GroupUniversity of Castilla-La ManchaCiudad RealSpain
  2. 2.Department of Business Administration, Faculty of Law and Social SciencesUniversity of Castilla-La ManchaCiudad RealSpain

Personalised recommendations