A simulated annealing based genetic local search algorithm for multi-objective multicast routing problems

Abstract

This paper presents a new hybrid evolutionary algorithm to solve multi-objective multicast routing problems in telecommunication networks. The algorithm combines simulated annealing based strategies and a genetic local search, aiming at a more flexible and effective exploration and exploitation in the search space of the complex problem to find more non-dominated solutions in the Pareto Front. Due to the complex structure of the multicast tree, crossover and mutation operators have been specifically devised concerning the features and constraints in the problem. A new adaptive mutation probability based on simulated annealing is proposed in the hybrid algorithm to adaptively adjust the mutation rate according to the fitness of the new solution against the average quality of the current population during the evolution procedure. Two simulated annealing based search direction tuning strategies are applied to improve the efficiency and effectiveness of the hybrid evolutionary algorithm. Simulations have been carried out on some benchmark multi-objective multicast routing instances and a large amount of random networks with five real world objectives including cost, delay, link utilisations, average delay and delay variation in telecommunication networks. Experimental results demonstrate that both the simulated annealing based strategies and the genetic local search within the proposed multi-objective algorithm, compared with other multi-objective evolutionary algorithms, can efficiently identify high quality non-dominated solution set for multi-objective multicast routing problems and outperform other conventional multi-objective evolutionary algorithms in the literature.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

References

  1. Bader, J., & Zitzler, E. (2011). HypE: an algorithm for fast hypervolume-based many-objective optimization. Evolutionary Computation, 19(1), 45–76.

    Article  Google Scholar 

  2. Betsekas, D., & Gallager, R. (1992). Data networks (2nd ed.). Englewood Cliffs: Prentice-Hall.

    Google Scholar 

  3. Beume, N., Naujoks, B., & Emmerich, M. (2007). SMS-EMOA: multiobjective selection based on dominated hypervolume. European Journal of Operational Research, 181(3), 1653–1669.

    Article  Google Scholar 

  4. Chen, S., & Nahrestedt, K. (1998). An overview of quality of service routing for next-generation high-speed networks: problems and solutions. IEEE Network Magazine, 12(6), 64–79. Special issue on transmission and distribution of digital video.

    Article  Google Scholar 

  5. Cui, X., Lin, C., & Wei, Y. (2003). A multiobjective model for QoS multicast routing based on genetic algorithm. In Proceedings of 2003 international conference on computer networks and mobile computing (ICCNMC’03) (pp. 49–53).

    Google Scholar 

  6. Crichigno, J., & Baran, B. (2004a). Multiobjective multicast routing algorithm for traffic engineering. In Proceedings of the 13th international conference on computer communications and networks (pp. 301–306). Heidelberg: Springer.

    Google Scholar 

  7. Crichigno, J., & Baran, B. (2004b). Multiobjective multicast routing algorithm. In Lecture notes in computer science (Vol. 3124, pp. 1029–1034).

    Google Scholar 

  8. Czyzzak, P., & Jaszkiewicz, A. (1998). Pareto simulated annealing—a meta-heuristic technique for multiobjective combinatorial optimization. Journal of Multi-Criteria Decision Analysis, 7(1), 34–37.

    Article  Google Scholar 

  9. Diot, C., Dabbous, W., & Crowcroft, J. (1997). Multipoint communication: a survey of protocols, functions, and mechanisms. IEEE Journal on Selected Areas in Communications, 15, 277–290.

    Article  Google Scholar 

  10. Diego, P., & Baran, B. (2005). Solving multiobjective MRP with a new ant colony optimization approach. In Proceedings of the 3rd international IFIP/ACM Latin American conference on networking, Columbia (pp. 11–19).

    Google Scholar 

  11. Deb, K. (2005). Multi-objective optimisation. In E. K. Burke & G. Kendall (Eds.), Search methodologies: introductory tutorials in optimisation and decision support methodologies (pp. 273–316). Berlin: Springer.

    Google Scholar 

  12. Eppstein, D. (1998). Finding the k shortest paths. SIAM Journal on Computing, 28, 652–673.

    Article  Google Scholar 

  13. Ehrgott, M., & Gandibleux, X. (2000). A survey and annotated bibliography of multiobjective combinatorial optimization. OR Spektrum, 22, 425–460.

    Article  Google Scholar 

  14. Fabregat, R., Donoso, Y., Baran, B., Solano, F., & Marzo, J. L. (2005). Multi-objective optimization scheme for multicast flows: a survey, a model and a MOEA solution. In Proceedings of the 3rd international IFIP/ACM Latin American conference on networking (LANC’05). New York: ACM.

    Google Scholar 

  15. Goldberg, D. (1989). Genetic algorithm in search, optimization & machine learning. Reading: Addison-Wesley.

    Google Scholar 

  16. Garey, M. R., & Johnson, D. S. (1979). Computers and intractability: a guide to the theory of NP-completeness. New York: Freeman.

    Google Scholar 

  17. Haghighat, A. T., Faez, K., Dehghan, M., Mowlaei, A., & Ghahremani, Y. (2004). GA-based heuristic algorithms for bandwidth-delay-constrained least-cost multicast routing. Computer Communications, 27, 111–127.

    Article  Google Scholar 

  18. Huang, J., & Liu, Y. (2010). MOEAQ: a QoS-aware multicast routing algorithm for MANET. Expert Systems with Applications, 37, 1391–1399.

    Article  Google Scholar 

  19. Hwang, F. K., & Richards, D. S. (1992). Steiner tree problems. Networks, 22, 55–89.

    Article  Google Scholar 

  20. Ishibuchi, H., & Murata, T. (1998). A Multi-objective genetic local search algorithm and its application to flowshop scheduling. IEEE Transactions on Systems, Man and Cybernetics. Part C, Applications and Reviews, 28(3), 392–403.

    Article  Google Scholar 

  21. Ishibuchi, H., Hitotsuyanagi, Y., Wakamatsu, Y., & Nojima, Y. (2010). How to choose solutions for local search in multiobjective combinatorial memetic algorithms. In Proc. of 11th international conference on parallel problem solving from nature (pp. 516–525).

    Google Scholar 

  22. Ishibuchi, H., Akedo, N., Ohyanagi, H., & Nojima, Y. (2011). Behavior of EMO algorithms on many-objective optimization problems with correlated objectives. In Proc. of 2011 IEEE congress on evolutionary computation, New Orleans, USA, June 5–8, 2011 (pp. 1465–1472).

    Google Scholar 

  23. Jaszkiewicz, A. (2002). Genetic local search for multi-objective combinatorial optimization. European Journal of Operational Research, 137, 50–71.

    Article  Google Scholar 

  24. Kirkpatrick, S., Gelatt, C. D., & Vecchi, M. P. (1983). Optimization by simulated annealing. Science, 220(4598), 671–680.

    Article  Google Scholar 

  25. Kompella, V. P., Pasquale, J. C., & Polyzos, G. C. (1993). Multicast routing for multimedia communication. IEEE/ACM Transactions on Networking, 1(3), 286–292.

    Article  Google Scholar 

  26. Koyama, A., Barolli, L., Matsumoto, K., & Apduhan, B. O. (2004). A GA-based multi-purpose optimization algorithm for QoS routing. In Proceedings of the 18th international conference on advanced information networking and applications (AINA 2004) (Vol. 1(1), pp. 23–28).

    Google Scholar 

  27. Kun, Z., Heng, W., & Feng-Yu, L. (2005). Distributed multicast routing for delay variation-bounded Steiner tree using simulated annealing. Computer Communications, 28, 1356–1370.

    Article  Google Scholar 

  28. Landa-Silva, J. D., Burke, E. K., & Petrovic, S. (2004). An introduction to multiobjective metaheuristics for scheduling and timetabling. In X. Gandibleux, M. Sevaux, K. Sorensen, & V. T’kindt (Eds.), Lecture notes in economics and mathematical systems: Vol. 535. Metaheuristic for multiobjective optimisation (pp. 91–129). Berlin: Springer.

    Google Scholar 

  29. Li, C., Cao, C., Li, Y., & Yu, Y. (2007). Hybrid of genetic algorithm and particle swarm optimization for multicast QoS routing. In IEEE international conference on control and automation, Guangzhou, China.

    Google Scholar 

  30. Li, H., & Landa-Silva, J. D. (2008). Evolutionary multi-objective simulated annealing with adaptive and competitive search direction. In Proceedings of the 2008 IEEE congress on evolutionary computation (CEC 2008) (pp. 3310–3317). Hong Kong: IEEE Press.

    Google Scholar 

  31. Li, H., & Zhang, Q. (2009). Multiobjective optimization problems with complicated Pareto sets, MOEA/D and NSGA-II. IEEE Transactions on Evolutionary Computation, 13(2), 284–302.

    Article  Google Scholar 

  32. Martins, F., & Costa, C. A. V. (2010). Multiobjective optimization with economic and environmental objective functions using modified simulated annealing. Computer-Aided Chemical Engineering, 28, 919–924.

    Article  Google Scholar 

  33. Mendoza, J. E., Castanier, B., Guéret, C., Medaglia, A. L., & Velasco, N. (2010). A memetic algorithm for the multi-compartment vehicle routing problem with stochastic demands. Computers & Operations Research, 37(11), 1886–1898.

    Article  Google Scholar 

  34. Miettinen, K. (1999). Nonlinear multiobjective optimization. Boston: Kluwer Academic.

    Google Scholar 

  35. Oliveira, C. A. S., & Pardalos, P. M. (2005). A Survey of combinatorial optimization problems in multicast routing. Computers & Operations Research, 32(8), 1953–1981.

    Article  Google Scholar 

  36. Qu, R., Xu, Y., & Kendall, G. (2009). A variable descent search algorithm for delay-constrained least-cost multicast routing. In Lecture notes in computer science (Vol. 5851, pp. 15–29).

    Google Scholar 

  37. Rai, S. C., Misra, B. B., Nayak, A. K., Mall, R., & Pradhan, S. K. (2010). A multi-objective QoS optimization with fuzzy based parameter setting for real time multicasting. International Journal of Communications, Network and System Sciences, 3, 530–539.

    Article  Google Scholar 

  38. Roy, A., & Das, S. K. (2004). QM2RP: a QoS-based mobile multicast routing protocol using multi-objective genetic algorithm. Wireless Networks, 10(3), 271–286.

    Article  Google Scholar 

  39. Roy, A., Banerjee, N., & Das, S. K. (2002). An efficient multi-objective QoS-routing algorithm for wireless-multicasting. In IEEE 55th vehicular technology conference (pp. 1160–1164).

    Google Scholar 

  40. Salama, H. F., Reeves, D. S., & Viniotis, Y. (1997). Evaluation of multicast routing algorithms for real-time communication on high-speed networks. IEEE Journal on Selected Areas in Communications, 15, 332–345.

    Article  Google Scholar 

  41. Skorin-Kapov, N., & Kos, M. (2003). The application of Steiner trees to delay constrained multicast routing: a tabu search approach. In Proceedings of the seventh international conference on telecommunications, Zagreb, Croatia.

    Google Scholar 

  42. Skorin-Kapov, N., & Kos, M. (2006). A GRASP heuristic for the delay-constrained MRP. Telecommunications Systems, 32(1), 55–69.

    Article  Google Scholar 

  43. Srinivas, N., & Deb, K. (1994). Multiobjective optimization using non-dominated sorting in genetic algorithms. Evolutionary Computation, 2(3), 221–248.

    Article  Google Scholar 

  44. Wang, J. Q., Qin, J., & Kang, L. S. (2006). A new QoS mutlicast routing model and its immune optimization algorithm. In J. Ma et al. (Eds.), Lecture notes in computer science: Vol. 4159. Ubiquitous intelligence and computing (pp. 369–378).

    Google Scholar 

  45. Waxman, B. M. (1988). Routing of multipoint connections. IEEE Journal on Selected Areas in Communications, 6, 1617–1622.

    Article  Google Scholar 

  46. Xu, Y., & Qu, R. (2011). Solving multi-objective multicast routing problems by evolutionary multi-objective simulated annealing algorithms with variable neighbourhoods. Journal of the Operational Research Society, 62, 313–325.

    Article  Google Scholar 

  47. Xu, Y., & Qu, R. (2012). An iterative local search approach based on fitness landscapes analysis for the delay-constrained multicast routing problem. Computer Communications, 35, 352–365.

    Article  Google Scholar 

  48. Yeo, C. K., Lee, B. S., & Er, M. H. (2004). A survey of application level multicast techniques. Computer Communications, 27(15), 1547–1568.

    Article  Google Scholar 

  49. Zahrani, M. S., Loomes, M. J., Malcolm, J. A., Dayem Ullah, A. Z. M., Steinhofel, K., & Albrecht, A. A. (2008). Genetic local search for multicast routing with pre-processing by logarithmic simulated annealing. Computers & Operations Research, 35, 2049–2070.

    Article  Google Scholar 

  50. Zitzler, E., & Thiele, L. (1999). Multiobjective evolutionary algorithms: a comprehensive case study and the strength Pareto approach. IEEE Transactions on Evolutionary Computation, 3(4), 257–271.

    Article  Google Scholar 

  51. Zhang, Q., & Li, H. (2007). MOEA/D: a multiobjective evolutionary algorithm based on decomposition. IEEE Transactions on Evolutionary Computation, 11(6), 712–731.

    Article  Google Scholar 

  52. Zhang, L., Cai, L. B., Li, M., & Wang, F. H. (2009). A method for least-cost QoS multicast routing based on genetic simulated annealing algorithm. Computer Communications, 32, 105–110.

    Article  Google Scholar 

Download references

Acknowledgements

This research is supported by Natural Science Foundation of China (NSFC project No. 61202289), the science and technology plan of Hunan Province (No. 2012FJ4263) and the project of the support plan for young teachers in Hunan University, China (No. 531107021137).

Author information

Affiliations

Authors

Corresponding author

Correspondence to Ying Xu.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Xu, Y., Qu, R. & Li, R. A simulated annealing based genetic local search algorithm for multi-objective multicast routing problems. Ann Oper Res 206, 527–555 (2013). https://doi.org/10.1007/s10479-013-1322-7

Download citation

Keywords

  • Multi-objective genetic local search
  • Simulated annealing
  • Multicast routing