Avramidis, N. A., Chan, W., Gendreau, M., L’Ecuyer, P., & Pisacane, O. (2010). Optimizing daily agent scheduling in a multi-skill call center. Eur J Oper Res, 200(3), 822–832.
Article
Google Scholar
Baïou, M., & Balinski, M. (2000a). The stable admissions polytope. Math Program, 87(3), 427–439.
Article
Google Scholar
Baïou, M., & Balinski, M. (2000b). Many-to-many matching: stable polyandrous polygamy (or polygamous polyandry). Discrete Appl Math, 101, 1–12.
Article
Google Scholar
Bellenguez, M. O., & Neron, E. (2004). Lower bounds for the multi-skill project scheduling problem with hierarchical levels of skills. In Proceedings of practice and theory of automated timetabling (PATAT2004), Pittsburgh, PA, USA (pp. 429–432).
Bellenguez, M. O., & Neron, E. (2007). A Branch-and-bound method for solving multi-skill project scheduling problem. RAIRO Rech Opér, 41, 155–170.
Article
Google Scholar
Cordeau, J. F., Laporte, G., Pasin, F., & Ropke, S. (2010). Scheduling technicians and tasks in a telecommunication company. J Sched, 13(4), 393–409.
Article
Google Scholar
Estellon, B., Gardi, F., & Nouioua, K. (2009). High-performance local search for task scheduling with human resource allocation. In Lect Notes Comput Sci (Vol. 5752, pp. 1–15).
Google Scholar
Fırat, M., & Hurkens, C. A. J. (2012). An improved MIP-based approach for a multi-skill workforce scheduling problem. J Sched, 15(3), 363–380.
Article
Google Scholar
Fleiner, T., Irving, R. W., & Manlove, D. F. (2007). Efficient algorithms for generalized stable marriage and roommates problems. Theor Comput Sci, 381, 162–176.
Article
Google Scholar
Gale, D., & Shapley, L. S. (1962). College admissions and the stability of marriage. Am Math Mon, 69(1), 9–15.
Article
Google Scholar
Gale, D., & Sotomayor, M. (1985). Some remarks on the stable matching problem. Discrete Appl Math, 11, 223–232.
Article
Google Scholar
Garey, M. R., & Johnson, D. S. (1979). Computers and intractability: a guide to the theory of NP-completeness (p. 221). San Francisco: Freeman.
Google Scholar
Gelain, M., Pini, M. S., Rossi, F., Venable, K. B., & Walsh, T. (2010). Local search for stable marriage problem. In Proceedings of COMSOC 2010, Düsseldorf, Germany.
Google Scholar
Heimerl, C., & Kolisch, R. (2010). Scheduling and staffing multiple projects with a multi-skilled workforce. IEEE Spectr, 32(2), 343–368.
Google Scholar
Hurkens, C. A. J. (2009). Incorporating the strength of MIP modeling in schedule construction. RAIRO Rech Opér, 43, 409–420.
Article
Google Scholar
Iwama, K., Manlove, D. F., Miyazaki, S., & Morita, Y. (1999). Stable marriage with incomplete lists and ties. In Lecture notes in computer science: Vol. 1644. Proceedings of ICALP 99 (pp. 443–452). Berlin: Springer.
Google Scholar
Iwama, K., Miyazaki, S., & Okamoto, K. (2004). A (2-clogN/N)-approximation algorithm for the stable marriage problem. In Lecture notes in computer science: Vol. 3111. Proceedings of SWAT 2004 (pp. 349–361). Berlin: Springer.
Google Scholar
Iwama, K., Miyazaki, S., & Yamauchi, N. (2008). A (2-\(c 1 / \sqrt{N}\))-approximation algorithm for the stable marriage problem. Algorithmica, 51(3), 902–914.
Article
Google Scholar
Li, H., & Womer, K. (2009). Scheduling projects with multi-skilled personnel by a hybrid MILP/CP benders decomposition algorithm. J Sched, 12(3), 281–298.
Article
Google Scholar
Valls, V., Perez, A., & Quintanilla, S. (2009). Skill workforce scheduling in service centers. Eur J Oper Res, 193(3), 791–804.
Article
Google Scholar
Vande Vate, J. H. (1989). Linear programming brings marital bliss. OR Lett, 8, 147–153.
Google Scholar