Skip to main content
Log in

Multi-neighborhood tabu search for the maximum weight clique problem

  • Published:
Annals of Operations Research Aims and scope Submit manuscript

Abstract

Given an undirected graph G=(V,E) with vertex set V={1,…,n} and edge set EV×V. Let w:VZ + be a weighting function that assigns to each vertex iV a positive integer. The maximum weight clique problem (MWCP) is to determine a clique of maximum weight. This paper introduces a tabu search heuristic whose key features include a combined neighborhood and a dedicated tabu mechanism using a randomized restart strategy for diversification. The proposed algorithm is evaluated on a total of 136 benchmark instances from different sources (DIMACS, BHOSLIB and set packing). Computational results disclose that our new tabu search algorithm outperforms the leading algorithm for the maximum weight clique problem, and in addition rivals the performance of the best methods for the unweighted version of the problem without being specialized to exploit this problem class.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Algorithm 1
Fig. 4

Similar content being viewed by others

Notes

  1. The source code of our MN/TS algorithm is publicly available at: http://www.info.univ-angers.fr/pub/hao/clique.html.

References

  • Alidaee, B., Kochenberger, G. A., Lewis, K., Lewis, M., & Wang, H. (2008). A new approach for modelling and solving set packing problems. European Journal of Operational Research, 86(2), 504–512.

    Article  Google Scholar 

  • Babel, L. (1994). A fast algorithm for the maximum weight clique problem. Computing, 52, 31–38.

    Article  Google Scholar 

  • Ballard, D., & Brown, C. (1982). Computer vision. Englewood Cliffs: Prentice-Hall.

    Google Scholar 

  • Battiti, R., & Mascia, F. (2010). Reactive and dynamic local search for the Max-Clique problem: engineering effective building blocks. Computers & Operations Research, 37, 534–542.

    Article  Google Scholar 

  • Battiti, R., & Protasi, M. (2001). Reactive local search for the maximum clique problem. Algorithmica, 29(4), 610–637.

    Article  Google Scholar 

  • Bomze, I. M., Pelillo, M., & Stix, V. (2000). Approximating the maximum weight clique using replicator dynamics. IEEE Transactions on Neural Networks, 11, 1228–1241.

    Article  Google Scholar 

  • Busygin, S. (2006). A new trust region technique for the maximum weight clique problem. Discrete Applied Mathematics, 154, 2080–2096.

    Article  Google Scholar 

  • Cai, S., Su, K., & Chen, Q. (2011). Local search with edge weighting and configuration checking heuristics for minimum vertex cover. Artificial Intelligence, 175(9–10), 1672–1696.

    Article  Google Scholar 

  • Delorme, X., Gandibleux, X., & Rodriguez, J. (2004). GRASP for set packing problems. European Journal of Operational Research, 153, 564–580.

    Article  Google Scholar 

  • Di Gaspero, L., & Schaerf, A. (2006). Neighborhood portfolio approach for local search applied to timetabling problems. Journal of Mathematical Modelling and Algorithms, 5(1), 65–89.

    Article  Google Scholar 

  • Friden, C., Hertz, A., & de Werra, D. (1989). Stabulus: a technique for finding stable sets in large graphs with tabu search. Computing, 42, 35–44.

    Article  Google Scholar 

  • Gendreau, M., Soriano, P., & Salvail, L. (1993). Solving the maximum clique problem using a tabu search approach. Annals of Operations Research, 41, 385–403.

    Article  Google Scholar 

  • Glover, F., & Laguna, M. (1997). Tabu search. Boston: Kluwer Academic.

    Book  Google Scholar 

  • Grosso, A., Locatelli, M., & Croce, F. D. (2004). Combining swaps and node weights in an adaptive greedy approach for the maximum clique problem. Journal of Heuristics, 10, 135–152.

    Article  Google Scholar 

  • Johnson, D. S., & Trick, M. A. (Eds.) (1996). Cliques, coloring, and satisfiability: second DIMACS Implementation Challenge. DIMACS series in discrete mathematics and theoretical computer science (Vol. 26). Providence: AMS.

    Google Scholar 

  • Karp, R. M. (1972). Reducibility among combinatorial problems. In R. E. Miller & J. W. Thatcher (Eds.), Complexity of computer computations (pp. 85–103). New York: Plenum Press.

    Chapter  Google Scholar 

  • Katayama, K., Hamamoto, A., & Narihisa, H. (2005). An effective local search for the maximum clique problem. Information Processing Letters, 95, 503–511.

    Article  Google Scholar 

  • Kwon, R. H. (2005). Data dependent worst case bounds for weighted set packing. European Journal of Operational Research, 167(1), 68–76.

    Article  Google Scholar 

  • Lü, Z., Hao, J. K., & Glover, F. (2011). Neighborhood analysis: a case study on curriculum-based course timetabling. Journal of Heuristics, 17(2), 97–118.

    Article  Google Scholar 

  • Mannino, C., & Stefanutti, E. (1999). An augmentation algorithm for the maximum weighted stable set problem. Computational Optimization and Applications, 14, 367–381.

    Article  Google Scholar 

  • Östergård, P. R. J. (2001). A new algorithm for the maximum weight clique problem. Nordic Journal of Computing, 8, 424–436.

    Google Scholar 

  • Pullan, W. (2008). Approximating the maximum vertex/edge weighted clique using local search. Journal of Heuristics, 14(2), 117–134.

    Article  Google Scholar 

  • Pullan, W., & Hoos, H. H. (2006). Dynamic local search for the maximum clique problem. The Journal of Artificial Intelligence Research, 25, 159–185.

    Google Scholar 

  • Wu, Q., & Hao, J. K. (2012). An adaptive multistart tabu search approach to solve the maximum clique problem. Journal of Combinatorial Optimization. doi:10.1007/s10878-011-9437-8.

    Google Scholar 

Download references

Acknowledgements

We are grateful to the referees for their suggestions. The work is partially supported by the “Pays de la Loire” Region (France) within the RaDaPop (2009-2013) and LigeRO (2010-2013) projects.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jin-Kao Hao.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wu, Q., Hao, JK. & Glover, F. Multi-neighborhood tabu search for the maximum weight clique problem. Ann Oper Res 196, 611–634 (2012). https://doi.org/10.1007/s10479-012-1124-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10479-012-1124-3

Keywords

Navigation