Annals of Operations Research

, Volume 207, Issue 1, pp 137–160 | Cite as

Alternative formulations for the Set Packing Problem and their application to the Winner Determination Problem

  • Mercedes Landete
  • Juan Francisco Monge
  • Antonio M. Rodríguez-Chía
Article
  • 241 Downloads

Abstract

An alternative formulation for the set packing problem in a higher dimension is presented. The addition of a new family of binary variables allows us to find new valid inequalities, some of which are shown to be facets of the polytope in the higher dimension. We also consider the Winner Determination Problem, which is equivalent to the set packing problem and whose special structure allows us to easily implement these valid inequalities in a very easy way. The computational experiments illustrate the performance of the valid inequalities and obtain good results.

Keywords

Set packing Valid inequality Boolean quadric polytope 

References

  1. Abrache, J., Crainic, T., Gendreau, M., & Rekik, M. (2007). Combinatorial auctions. Annals of Operations Research, 153, 131–164. CrossRefGoogle Scholar
  2. Alidaee, B., Kochenberger, G., Lewis, K., Lewis, M., & Wang, H. (2008). A new approach for modeling and solving set packing problems. European Journal of Operational Research, 186, 504–512. CrossRefGoogle Scholar
  3. Anderson, A., Tenhnen, M., & Ygge, F. (2000). Integer programming for combinatorial auction winner determination. In Proceedings of fourth international conference on multiagent system (ICMAS-2000). Google Scholar
  4. Aparicio, J., Landete, M., Monge, J. F., & Sirvent, I. (2008). A new pricing scheme based on DEA for iterative multi-unit combinatorial auctions. Top, 16, 319–344. CrossRefGoogle Scholar
  5. Balas, E., & Zemel, E. (1977). Critical cutsets of graphs and canonical facets of set-packing polytopes. Mathematics of Operations Research, 2, 15–19. CrossRefGoogle Scholar
  6. Cánovas, L., Landete, M., & Marín, A. (2000). New facets for the set packing polytope. Operations Research Letters, 27, 153–161. CrossRefGoogle Scholar
  7. Cánovas, L., Landete, M., & Marín, A. (2003). Facet obtaining procedures for set packing problems. SIAM Journal on Discrete Mathematics, 16, 127–155. CrossRefGoogle Scholar
  8. de Farias, I. R., Johnson, E. L., & Nemhauser, G. L. (2002). Facets of the complementarity knapsack polytope. Mathematics of Operations Research, 27, 210–226. CrossRefGoogle Scholar
  9. Escudero, L. F., Garín, A., & Pérez, G. (1999). On using an automatic scheme for obtaining the convex hull defining inequalities of a Weismantel 0–1 knapsack constraint. Top, 7, 145–153. CrossRefGoogle Scholar
  10. Escudero, L. F., Landete, M., & Marín, A. (2009). A branch-and-cut algorithm for the Winner Determination Problem. Decision Support Systems, 46(3), 649–659. CrossRefGoogle Scholar
  11. Garg, R., & Kapoor, S. (2006). Auction algorithms for market equilibrium. Mathematics of Operations Research, 31, 714–729. CrossRefGoogle Scholar
  12. Kwon, R. H. (2005). Data dependent worst case bounds for weighted set packing. European Journal of Operational Research, 167, 68–76. CrossRefGoogle Scholar
  13. Leyton-Brown, K., Pearson, M., & Shoham, Y. (2000). Towards a universal test suite for combinatorial auction algorithms. In Proc. ACM conf. on electronic commerce (EC-00), Minneapolis. Google Scholar
  14. Nemhauser, G. L., & Trotter, L. E., Jr. (1974). Properties of vertex packing and independence system polyhedra. Mathematical Programming, 6, 48–61. CrossRefGoogle Scholar
  15. Nemhauser, G. L., & Wolsey, L. A. (1988). Integer and combinatorial optimization. Series in discrete mathematics and optimization. New York: Wiley-Interscience. Google Scholar
  16. Nobili, P., & Sassano, A. (1989). Facets and lifting procedures for the set covering polytope. Mathematical Programming, 45, 111–137. CrossRefGoogle Scholar
  17. Padberg, M. W. (1977). On the complexity of set packing polyhedra. Annals of Discrete Mathematics, 1, 421–434. CrossRefGoogle Scholar
  18. Padberg, M. W. (1989). The Boolean quadratic polytope: some characteristics, facets and relatives. Mathematical Programming, 45, 139–172. CrossRefGoogle Scholar
  19. Pekec, A. & Rothkopf, M. (2003). Combinatorial auction design. Management Science, 49, 1485–1503. CrossRefGoogle Scholar
  20. Rothkopf, M., Pekec, A., & Harstad, R. (1998). Computationally manageable combinatorial auctions. Management Science, 44, 1131–1147. CrossRefGoogle Scholar
  21. Sandholm, T., Suri, S., Gilpin, A., & Levine, D. (2005). CABOB: a fast optimal algorithm for winner determination in combinatorial auctions. Management Science, 51, 374–390. CrossRefGoogle Scholar
  22. Sherali, H. D., Adams, W. P., & Driscoll, P. J. (1998). Exploiting special structures in constructing a hierarchy of relaxations for 0–1 mixed integer problems. Operational Research, 46, 396–405. CrossRefGoogle Scholar
  23. Smith, J. M. (2000). Quadratic set packing problems, Steiner trees, and their integration. International Journal of Mathematical Algorithms, 2, 47–70. Google Scholar
  24. Vemuganti, R. R. (1998). Applications of set covering, set packing and set partitioning models: a survey. In D.-Z. Du et al. (Eds.), Handbook of combinatorial optimization (Vol. 1, pp. 573–746). Boston: Kluwer Academic. CrossRefGoogle Scholar
  25. De Vries, S. & Vohra, R. V. (2003). Combinatorial auctions: a survey. INFORMS Journal on Computing, 15, 284–309. CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  • Mercedes Landete
    • 1
  • Juan Francisco Monge
    • 1
  • Antonio M. Rodríguez-Chía
    • 2
  1. 1.Centro de Investigación OperativaUniversidad Miguel Hernández of ElcheElcheSpain
  2. 2.Facultad de Ciencias, Dpto. Estadística e Investigación OperativaUniv. CádizCádizSpain

Personalised recommendations