Skip to main content
Log in

Polyhedral study of the maximum common induced subgraph problem

  • Published:
Annals of Operations Research Aims and scope Submit manuscript

Abstract

In this paper we present an exact algorithm for the Maximum Common Induced Subgraph Problem (MCIS) by addressing it directly, using Integer Programming (IP) and polyhedral combinatorics. We study the MCIS polytope and introduce strong valid inequalities, some of which we prove to define facets. Besides, we show an equivalence between our IP model for MCIS and a well-known formulation for the Maximum Clique problem. We report on computational results of branch-and-bound (B&B) and branch-and-cut (B&C) algorithms we implemented and compare them to those yielded by an existing combinatorial algorithm.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Borndörfer, R. (1997). Aspects of set packing, partitioning, and covering. Ph.D. thesis, Mathematics Department, Technischen Universität, Berlin.

  • Chen, L., & Robien, W. (1994). Application of the maximal common substructure algorithm to automatic interpretation of 13C NMR spectra. Journal of Chemical Information and Computer Sciences, 34, 934–941.

    Google Scholar 

  • Conte, D., Guidobaldi, C., & Sansone, C. (2003). A comparison of three maximum common subgraph algorithms on a large database of labeled graphs. In Lecture notes in computer science (Vol. 2726, pp. 130–141). Berlin: Springer.

    Google Scholar 

  • Edmonds, M. (1975). Private communication (4.2.2; a1.4)

  • Falkenhainer, B., Forbus, K., & Gentner, D. (1989/1990). The structure-mapping engine: algorithms and examples. Artificial Intelligence, 34, 1–63.

    Article  Google Scholar 

  • Foggia, P., Sansone, C., & Vento, M. (2001a). A database of graphs for isomorphism and sub-graph isomorphism benchmarking. In CoRR (pp. 176–187).

    Google Scholar 

  • Foggia, P., Sansone, C., & Vento, M. (2001b). The graph database cd. Available online (consulted at July 2011), http://amalfi.dis.unina.it/graph.

  • Garey, M. R., & Johnson, D. S. (1979). Computer and intractability: a guide to the theory of NP-completeness. San Francisco: Freeman.

    Google Scholar 

  • Gifford, E., Johnson, M., Smith, D., & Tsai, C. (1996). Structure-reactivity maps as a tool for visualizing xenobiotic structure-reactivity. Network Science, 2, 1–33.

    Google Scholar 

  • Horaud, R., & Skordas, T. (1989). Stereo correspondence through feature grouping and maximal cliques. IEEE Transactions on Pattern Analysis and Machine Intelligence, 11, 1168–1180.

    Article  Google Scholar 

  • Johnson, D. (2002). A theoretician’s guide to the experimental analysis of algorithms. In M. H. Goldwasser, D. S. Johnson, & C. C. McGeoch (Eds.), Data structures, near neighbor searches, and methodology: fifth and sixth DIMACS implementation challenges (pp. 215–250). Providence: Am. Math. Soc.

    Google Scholar 

  • Kann, V. (1992). On the approximability of the maximum common subgraph problem. In Lecture notes in computer science (Vol. 577, pp. 377–388). Berlin: Springer.

    Google Scholar 

  • Krissinel, E. B., & Henrick, K. (2004). Common subgraph isomorphism detection by backtracking search. Software, Practice & Experience, 34(6), 591–607. http://dx.doi.org/10.1002/spe.588.

    Article  Google Scholar 

  • Löebel, A. Porta: Polyhedron representation transformation algorithm. Available online (consulted at September 2010). http://www.iwr.uni-heidelberg.de/groups/comopt/software/PORTA/.

  • Manić, G. (2007). Modelagem matemática e aplicações de problemas de otimização relativos à busca de subgrafos com estruturas comuns. fapesp’s First Scientific Report, post-doctoral grant # 2006/01817-7 (in Portuguese, unpublished).

  • Mcgregor, J. J. (1982). Backtrack search algorithms and the maximal common subgraph problem. Software, Practice & Experience, 12(1), 23–34.

    Article  Google Scholar 

  • Messmer, B. T., & Bunke, H. (1999). Decision tree approach to graph and subgraph isomorphism detection. Pattern Recognition, 32(12), 1979–1998.

    Article  Google Scholar 

  • Nemhauser, G., & Wolsey, L. (1988). Integer and combinatorial optimization. New York: Wiley.

    Google Scholar 

  • Nemhauser, G. L., & Sigismondi, G. (1992). A strong cutting plane/branch-and-bound algorithm for node packing. The Journal of the Operational Research Society, 43(5), 443–457. http://www.jstor.org/stable/2583564.

    Google Scholar 

  • Östergård, P. R. J. (2002). A fast algorithm for the maximum clique problem. Discrete Applied Mathematics, 120, 197–207.

    Article  Google Scholar 

  • Pelillo, M., Siddiqi, K., & Zucker, S. W. (1999). Matching hierarchical structures using association graphs. IEEE Transactions on Pattern Analysis and Machine Intelligence, 21, 1105–1120.

    Article  Google Scholar 

  • Piva, B. (2009). Estudo poliedral do problema do máximo subgrafo induzido comum. Master’s thesis, Instituto de Computação, Universidade Estadual de Campinas, Campinas. http://cutter.unicamp.br/document/?down=000477497 (in Portuguese).

  • Piva, B., & de Souza, C. (2011). Facets for the maximum common induced subgraph problem polytope. Available online (consulted at September 2011). http://www.optimization-online.org/DB_HTML/2011/09/3148.html

  • Raymond, J. W., & Willett, P. (2002). Maximum common subgraph isomorphism algorithms for the matching of chemical structures. Journal of Computer-Aided Molecular Design, 16(7), 521–533.

    Article  Google Scholar 

  • Raymond, J. W., Gardiner, E. J., & Willett, P. (2002a). Heuristics for similarity searching of chemical graphs using a maximum common edge subgraph algorithm. Journal of Chemical Information and Computer Sciences, 42(2), 305–316.

    Google Scholar 

  • Raymond, J. W., Gardiner, E. J., & Willett, P. (2002b). RASCAL: Calculation of graph similarity using maximum common edge subgraphs. The Computer Journal, 45(6), 631–644.

    Article  Google Scholar 

  • Shearer, K., Bunke, H., & Venkatesh, S. (2001). Video indexing and similarity retrieval by largest common subgraph detection using decision trees. Pattern Recognition, 34, 1075–1091.

    Article  Google Scholar 

  • Suters, W. H., Abu-Khzam, F. N., Zhang, Y., Symons, C. T., Samatova, N. F., & Langston, M. A. (2005). A new approach and faster exact methods for the maximum common subgraph problem. In Lecture notes in computer science: Vol. 3595. Computing and combinatorics (pp. 717–727). Berlin: Springer.

    Chapter  Google Scholar 

  • Wang, Y., & Maple, C. (2005). A novel efficient algorithm for determining maximum common subgraphs. In International conference on information visualisation (IV’05) (pp. 657–663). London: IEEE Comput. Soc. http://doi.ieeecomputersociety.org/10.1109/IV.2005.11.

    Google Scholar 

  • West, D., et al. (2001). Introduction to graph theory. New York: Prentice Hall.

    Google Scholar 

  • Willet, P. (1999). Matching of chemical and biological structures using subgraph and maximal common subgraph isomorphism algorithms. The IMA Volumes in Mathematics and Its Applications, 108, 11–38.

    Article  Google Scholar 

  • Wong, A. K. C., & Akinniyi, F. A. (1983). An algorithm for the largest common subgraph isomorphism using the implicit net. In Inst. electrical & electronics engineers: Vol. 1. Proc. int. conf. systems, man and cybernetics (pp. 197–201).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Breno Piva.

Additional information

Financial support by Fapesp, grant number 2007/53617-4 (10/2007-02/2009) and CNPq, grants number 132034/2007-7 (03/2007-09/2007), 301732/2007-8 and 472504/2007-0.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Piva, B., de Souza, C.C. Polyhedral study of the maximum common induced subgraph problem. Ann Oper Res 199, 77–102 (2012). https://doi.org/10.1007/s10479-011-1019-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10479-011-1019-8

Keywords

Navigation