Skip to main content

Controlling pollution and environmental absorption capacity

Abstract

This pollution accumulation model shows that the environmental absorption capacity is impacted by economic activity. The resulting optimal control problem has two inter-related state variables: the stock of pollution and the absorption capacity of the environment. The stock of pollution decreases with environmental absorption capacity and increases with the rate of current emissions, which is controlled by a production level as well as an emissions reduction effort. However, the environmental absorption capacity is positively affected by an absorption development effort, and negatively impacted by the stock of pollution. Under specific conditions, it is shown that an optimal path, which can be either monotonic or following transient oscillations, leads to a (nontrivial) saddle-point characterized by a positive environmental absorption capacity.

This is a preview of subscription content, access via your institution.

References

  • Allen, M., Frame, D., Frieler, K., Hare, W., Huntingford, C., Jones, C., Knutti, R., Lowe, J., Meinshausen, M., Meinshausen, N., & Raper, S. (2009). The exit strategy. Nature Climate Change, 3, 56–58.

    Article  Google Scholar 

  • Board on Atmospheric Sciences and Climate (2011). Climate stabilization targets: emissions, concentrations, and impacts over decades to millennia. Washington: The National Academies Press.

    Google Scholar 

  • Brock, W. A., & Dechert, W. D. (2008). The polluted ecosystem game. Indian Growth and Development Review, 1(1), 7–31.

    Article  Google Scholar 

  • Caldeira, K., Jain, A. K., & Hoffert, M. I. (2003). Climate sensitivity uncertainty and the need for energy without CO2 emission. Science, 299(5615), 2052–2054.

    Article  Google Scholar 

  • Canadell, J. G., Le Quéré, C., Raupach, M. R., Field, C. B., Buitenhuis, E. T., Ciais, P., Conway, T. J., Gillett, N. P., Houghton, R. A., & Marland, G. (2007). Contributions to accelerating atmospheric CO2 growth from economic activity, carbon intensity, and efficiency of natural sinks. Proceedings of the National Academy of Sciences, 104(47), 18866–18870.

    Article  Google Scholar 

  • Carpenter, S. R., & Cottingham, K. L. (1997). Resilience and restoration of lakes. Conservation Ecology, 1(1), 2. http://www.consecol.org/vol1/iss1/art2/.

    Google Scholar 

  • Caputo, M., & Wilen, J. (1995). Optimal cleanup of hazardous wastes. International Economic Review, 36(1), 217–243.

    Article  Google Scholar 

  • Chevé, M. (2000). Irreversibility of pollution accumulation. Environmental & Resource Economics, 16(1), 93–104.

    Article  Google Scholar 

  • Common, M., & Perrings, C. (1992). Towards an ecological economics of sustainability. Ecological Economics, 6(1), 7–34.

    Article  Google Scholar 

  • Costanza, R., & Daly, H. E. (1992). Natural capital and sustainable development. Conservation Biology, 6(1), 37–46.

    Article  Google Scholar 

  • Costanza, R., d’Arge, R., de Groot, R. S., Farber, S., Grasso, M., Hannon, B., Limburg, K., Naeem, S., O’Neill, R. V., Paruelo, J., Raskin, R. G., Sutton, P., & van den Belt, M. (1997). The value of the world’s ecosystem services and natural capital. Nature, 387, 253–260.

    Article  Google Scholar 

  • Costanza, R. (1998). The value of ecosystem services. Ecological Economics, 25(1), 1–2.

    Article  Google Scholar 

  • Cox, P. M., Betts, R. A., Jones, C., Spall, S. A., & Totterdell, I. (2000). Acceleration of global warming due to carbon-cycle feedbacks in a coupled climate model. Nature, 408, 184–187.

    Article  Google Scholar 

  • Cox, P. M., Betts, R. A., Collins, M., Harris, P. P., Huntingford, C., & Jones, C. D. (2004). Amazonian forest dieback under climate-carbon cycle projections for the 21st century. Theoretical and Applied Climatology, 78(1/3), 137–156.

    Google Scholar 

  • Daly, H. (1997). Georgescu-Roegen vs. Solow/Stiglitz. Ecological Economics, 22(3), 261–267.

    Article  Google Scholar 

  • Dasgupta, P., & Mäler, K. G. (2003). The economics of non-convex ecosystems. Environmental & Resource Economics, 26(4), 499–685.

    Article  Google Scholar 

  • Dasgupta, P., & Mäler, K. (2004). Environmental and resource economics: some recent developments (SANDEE Working Papers, WP 7), ISSN 1813-1891.

  • Dockner, E. (1985). Local stability in optimal control problems with two state variables. In G. Feichtinger (Ed.), Optimal control theory and economic analysis (Vol. 2). Amsterdam: North-Holland.

    Google Scholar 

  • Dockner, E., & Feichtinger, G. (1991). On the optimality of limit cycles in dynamic economic systems. Journal of Economics, 53(1), 31–50.

    Article  Google Scholar 

  • Farzin, Y. H. (1996). Optimal pricing of environmental and natural resource use with stock externalities. Journal of Public Economics, 62(2), 31–57.

    Article  Google Scholar 

  • Forster, B. (1975). Optimal pollution control with a nonconstant exponential rate of decay. Journal of Environmental Economics and Management, 2(1), 1–6.

    Article  Google Scholar 

  • Georgescu-Roegen, N. (1971). The entropy law and the economic process. Cambridge: Harvard University Press.

    Book  Google Scholar 

  • Grass, D., Caulkins, J. P., Feichtinger, G., Tragler, G., & Behrens, D. A. (2008). Optimal control of nonlinear processes with applications in drugs, corruption, and terror. Berlin: Springer.

    Book  Google Scholar 

  • Grossman, G. M., & Krueger, A. B. (1995). Economic growth and the environment. The Quarterly Journal of Economics, 110(2), 353–377.

    Article  Google Scholar 

  • Harris, J. (2002). Environmental and resource economics: a contemporary approach. Boston: Houghton Mifflin.

    Google Scholar 

  • Hoffert, M. I., Caldeira, K., Jain, A. K., Haites, E. F., Harvey, L. D. D., Potter, S. D., Schlesinger, M. E., Schneider, S. H., Watts, R. G., Wigley, T. M. L., & Wuebbles, D. J. (1998). Energy implications of future stabilization of atmospheric CO2 content. Nature, 395, 881–884.

    Article  Google Scholar 

  • Holling, C. (1973). Resilience and stability of ecological systems. Annual Review of Ecology and Systematics, 4, 1–23.

    Article  Google Scholar 

  • Keeler, E., Spence, M., & Zeckhauser, R. (1972). The optimal control of pollution. Journal of Economic Theory, 4(1), 19–34.

    Article  Google Scholar 

  • Kossioris, G., Plexousakis, M., Xepapadeas, A., Zeeuw, A.J. de, & Maler, K.-G. (2008). Feedback Nash equilibria for non-linear differential games in pollution control. Journal of Economic Dynamics and Control, 32(4), 1312–1331.

    Article  Google Scholar 

  • Krautkraemer, J. A. (1985). Optimal growth resource amenities and preservation of natural environments. Review of Economic Studies, 52(1), 153–170.

    Article  Google Scholar 

  • Leandri, M. (2009). The shadow price of assimilative capacity in optimal flow pollution control. Ecological Economics, 68(4), 1220–1231.

    Article  Google Scholar 

  • Lewis, S. L., Brando, P. M., Phillips, O. L., van der Heijden, G. M. F., & Nepstad, D. (2011). The 2010 Amazon drought. Science, 331(6017), 554.

    Article  Google Scholar 

  • Mäler, K. G. (1991). National accounts and environmental resources. Environmental & Resource Economics, 1(1), 1–15.

    Google Scholar 

  • Nordhaus, W. D. (1991). To slow or not to slow: the economics of the greenhouse effect. The Economic Journal, 101(407), 920–937.

    Article  Google Scholar 

  • Nordhaus, W. D. (2007). A review of the Stern review on the economics of climate. Journal of Economic Literature, 45(3), 686–702.

    Article  Google Scholar 

  • Pezzey, J. (1992). Sustainability: an interdisciplinary guide. Environmental Values, 1(4), 321–362.

    Article  Google Scholar 

  • Pielke, R., Jr., Wigley, T., & Green, C. (2008). Dangerous assumptions. Nature, 452, 531–532.

    Article  Google Scholar 

  • Raupach, M. R., Marland, G., Ciais, P., Le Quéré, C., Canadell, J. G., Klepper, G., & Field, C. B. (2007). Global and regional drivers of accelerating CO2 emissions. Proceedings of the National Academy of Sciences, 104(24), 10288–10293.

    Article  Google Scholar 

  • Schaphoff, S., Lucht, W., Gerten, D., Sitch, S., Cramer, W., & Prentice, I. C. (2006). Terrestrial biosphere carbon storage under alternative climate projections. Climatic Change, 74(1/3), 97–122.

    Article  Google Scholar 

  • Scheffer, M. (1997). The ecology of shallow lakes. London: Chapman & Hall.

    Google Scholar 

  • Scheffer, M., Bascompte, J., Brock, W. A., Brovkin, V., Carpenter, S. R., Dakos, V., Held, H., Van Nes, E. H., Rietkerk, M., & Sugihara, J. (2009). Early warning signals for critical transitions. Nature, 461(3), 53–59.

    Article  Google Scholar 

  • Stern, N. (2006). Stern review report on the economics of climate change. HM Treasury, London, UK.

  • Stokey, N. (1998). Are there limits to growth? International Economic Review, 39(1), 1–31.

    Article  Google Scholar 

  • Tahvonen, O., & Salo, S. (1996). Nonconvexities in optimal pollution accumulation. Journal of Environmental Economics and Management, 31(2), 160–177.

    Article  Google Scholar 

  • Tahvonen, O., & Withagen, C. (1996). Optimality of irreversible pollution accumulation. Journal of Economic Dynamics & Control, 20(9), 1775–1795.

    Article  Google Scholar 

  • Tsur, Y., & Zemel, A. (1996). Accounting for global warming risks: resource management under uncertainty. Journal of Economic Dynamics & Control, 20(6), 1289–1305.

    Article  Google Scholar 

  • Ulph, A., & Ulph, D. (1994). The optimal time path of a carbon tax. Oxford Economic Papers, 46(5), 857–868.

    Google Scholar 

  • van der Ploeg, F., & Withagen, C. (1991). Pollution control and the Ramsey problem. Environmental & Resource Economics, 1(2), 215–236.

    Article  Google Scholar 

  • Wirl, F. (1999). Complex, dynamic environmental policies. Resource and Energy Economics, 21(1), 19–41.

    Article  Google Scholar 

  • Wirl, F. (2000). Optimal accumulation of pollution: existence of limit cycles for the social optimum and the competitive equilibrium. Journal of Economic Dynamics & Control, 24(2), 297–306.

    Article  Google Scholar 

  • World Bank (1992). World development report: development and the environment. London: Oxford University Press.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fouad El Ouardighi.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

El Ouardighi, F., Benchekroun, H. & Grass, D. Controlling pollution and environmental absorption capacity. Ann Oper Res 220, 111–133 (2014). https://doi.org/10.1007/s10479-011-0982-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10479-011-0982-4

Keywords

  • Pollution
  • Environmental absorption capacity
  • Production rate
  • Emissions reduction effort
  • Absorption development effort