Skip to main content
Log in

Determination of storage tanks location for optimal short-term scheduling in multipurpose/multiproduct batch-continuous plants under uncertainties

  • Published:
Annals of Operations Research Aims and scope Submit manuscript

Abstract

A multipurpose/multiproduct plant has to deal with many combinations of tasks sequences and operation rates that lead to accumulation problems. These problems can be handled using storage tanks, but usually their location within the flowsheet is predetermined and not subject to optimization, missing the opportunity to better satisfy the customers. In this work we will determinate the optimal location of storage tanks for the short-term scheduling under uncertainty. A hybrid simulation-based optimization (SBO) strategy was developed and implemented to solve the problems combining stochastic and deterministic solution algorithms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Adonyi, R., Biros, G., Holczinger, T., & Friedler, F. (2008). Effective scheduling of a large-scale paint production system. Journal of Cleaner Production, 16, 225–232.

    Article  Google Scholar 

  • Aydogan, S., Orçun, S., Blau, G., Pekny, J. F., & Reklaitis, G. V. (2005). A simulation-based optimization approach to the evolution of an advanced life support system for Mars base. In Proceedings of 2005 AIChE annual meeting, Cincinnati (EEUU), 10/30/05–11/04/05, oral presentation code 104f.

    Google Scholar 

  • Balasubramanian, J., & Grossmann, I. E. (2004). Approximation to multistage stochastic optimization in multiperiod batch plant scheduling under demand uncertainty. Industrial & Engineering Chemistry Research, 43, 3695–3713.

    Article  Google Scholar 

  • Barton, R. R. (1994). Metamodeling: a state of the art review. In J. D. Tew, S. Manivannan, D. A. Sadowski, & A. F. Seila (Eds.), Proceedings of the 1994 winter simulation conference (p. 237).

    Chapter  Google Scholar 

  • Birge, Z., & Louveaux, S. (1997). Principles on stochastic programming. New York: Springer.

    Google Scholar 

  • Brooke, A., Kendrick, D., Meeraus, A., & Raman, R. (2008). GAMS: a user guide. Washington: GAMS Development Corporation.

    Google Scholar 

  • Castro, P. M., Barbosa-Póvoa, A. P., Matos, H. A., & Novais, A. Q. (2004). Simple continuous-time formulation for short-term scheduling of batch and continuous processes. Industrial & Engineering Chemistry Research, 43, 105–118.

    Article  Google Scholar 

  • Cheng, L., Subrahmanian, E., & Westerberg, A. W. (2003). Design and planning under uncertainty: issues on problem formulations and solutions. Computers & Chemical Engineering, 27, 781–801.

    Article  Google Scholar 

  • Cheng, L., Subrahmanian, E., & Westerberg, A. W. (2004a). A comparison of optimal control and stochastic programming from a formulation and computation perspective. Computers & Chemical Engineering, 29, 149–164.

    Article  Google Scholar 

  • Cheng, L., Subrahmanian, E., & Westerberg, A. W. (2004b). Multiobjective decisions on capacity planning and inventory control. Industrial & Engineering Chemistry Research, 43, 2192–2208.

    Article  Google Scholar 

  • Diwekar, U. (2002). Optimization under uncertainty: an overview. SIAG/Optimization Views-and-News, 13(1), 1–8.

    Google Scholar 

  • Duenas, A., & Petrovic, D. (2000). An approach to predictive-reactive scheduling of parallel machines subject to disruptions. Annals of Operations Research, 159(1), 65–82.

    Article  Google Scholar 

  • Ferris, M. C., Dirkse, S., & Jain, R. (2005). MATLAB and GAMS: interfacing optimization and visualization software. Computer Sciences Department, University of Wisconsin at Madison, Madison. http://www.cs.wisc.edu/math-prog/matlab.html. Accessed October 7, 2010.

  • George, E. D., & Farid, S. S. (2008). Stochastic combinatorial optimization approach to biopharmaceutical portfolio management. Industrial & Engineering Chemistry Research, 47, 8762–8774.

    Article  Google Scholar 

  • Gosavi, A. (2003). Simulation-based optimization: parametric optimization techniques and reinforcement learning. New York: Springer. ISBN-10: 1402074549, ISBN-13: 978-1402074547.

    Google Scholar 

  • Gürkan, G. (2000). Simulation optimization of buffer allocations in production lines with unreliable machines. Annals of Operations Research, 93, 177–216.

    Article  Google Scholar 

  • Ierapetritou, M. G., & Floudas, C. A. (1998). Effective continuous-time formulation for short-term scheduling: II. Continuous and semi-continuous processes. Industrial & Engineering Chemistry Research, 37, 4360–4374.

    Article  Google Scholar 

  • International Society for Measurement and Control (1995). ANSI/ISA-S88.01-1995, Batch Control, Part 1: Models and Terminology, 23/10/1995.

  • International Society for Measurement and Control (2000). ISA-S95.01-1999, Enterprise Control System Integration, Part 1: Models and Terminology. Draft 13.

  • Jung, J. Y., Blau, G., Pekny, J. F., Reklaitis, G. V., & Eversdyk, D. (2004). A simulation based optimization approach to supply chain management under demand uncertainty. Computers & Chemical Engineering, 28, 2087–2106.

    Article  Google Scholar 

  • Kim, M., Rao, A. S., & Yoo, C. (2009). Dual optimization strategy for N and P removal in a biological wastewater treatment plant. Industrial & Engineering Chemistry Research, 48, 6363–6371.

    Article  Google Scholar 

  • Kleinman, N. L., Spall, J. C., & Naiman, D. Q. (1999). Simulation-based optimization with stochastic approximation using common random numbers. Management Science, 45, 1570.

    Article  Google Scholar 

  • Kuster, J., Jannach, D., & Friedrich, G. (2010). Applying local rescheduling in response to schedule disruptions. Annals of Operations Research, 180(1), 265–282.

    Article  Google Scholar 

  • Law, A. M., & Kelton, W. D. (2000). Simulation modeling & analysis (3rd edn.). New York: McGraw-Hill.

    Google Scholar 

  • MATLAB 7.5 (2007). Simulink 6.0, Stateflow 6.0. User’s manual. Natick: The MathWorks, Inc.

    Google Scholar 

  • Mele, F. D., Espuña, A., & Puigjaner, L. (2006a). Supply chain management through dynamic model parameters optimization. Industrial & Engineering Chemistry Research, 45, 1708–1721.

    Article  Google Scholar 

  • Mele, F. D., Guillén, G., Espuña, A., & Puigjaner, L. (2006b). A simulation-based optimization framework for parameter optimization of supply-chain networks. Industrial & Engineering Chemistry Research, 45, 3133–3148.

    Article  Google Scholar 

  • Nedderrneijer, H. G., van Oortmarssen, G. J., Piersma, N., & Dekker, R. (2000). A framework for response surface methodology for simulation optimization. In Proceedings of the 1999 winter simulation conference.

    Google Scholar 

  • Shaik, M. A., & Floudas, C. A. (2009). Novel unified modeling approach for short-term scheduling. Industrial & Engineering Chemistry Research, 48, 2947–2964.

    Article  Google Scholar 

  • Silva, H. G., & Salcedo, R. L. R. (2009). A coupled strategy for the solution of NLP and MINLP optimization problems—benefits and pitfalls. Industrial & Engineering Chemistry Research, 48, 9611–9621.

    Article  Google Scholar 

  • Subramanian, D., Pekny, J. F., & Reklaitis, G. V. (2001). A simulation-optimization framework for research and development pipeline management. AIChE Journal, 47, 2226–2242.

    Article  Google Scholar 

  • Subramanian, D., Pekny, J. F., Reklaitis, G. V., & Blau, G. E. (2003). A simulation-optimization framework for stochastic optimization of R&D pipeline management. AIChE Journal, 49, 96–112.

    Article  Google Scholar 

  • Sundaramoorthy, A., & Maravelias, C. T. (2008). Modeling of storage in batching and scheduling of multistage processes. Industrial & Engineering Chemistry Research, 47, 6648–6660.

    Article  Google Scholar 

  • Sundar Raj, T., & Lakshminarayanan, S. (2008). Multiobjective optimization in multiechelon decentralized supply chains. Industrial & Engineering Chemistry Research, 47, 6661–6671.

    Article  Google Scholar 

  • Wan, X., Pekny, J. F., & Reklaitis, G. V. (2005). Simulation-based optimization with surrogate models—application to supply chain management. Computers & Chemical Engineering, 29, 1317–1328.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guillermo A. Durand.

Additional information

An outline of this work was first presented in the ALIO-INFORMS Joint International Conference 2010, Buenos Aires.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Durand, G.A., Mele, F.D. & Bandoni, J.A. Determination of storage tanks location for optimal short-term scheduling in multipurpose/multiproduct batch-continuous plants under uncertainties. Ann Oper Res 199, 225–247 (2012). https://doi.org/10.1007/s10479-011-0970-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10479-011-0970-8

Keywords

Navigation