Skip to main content

Integrating fire risk in stand management scheduling. An application to Maritime pine stands in Portugal

Abstract

Maritime pine (Pinus pinaster Ait) is a very important forest species in Portugal. Nevertheless, both revenues and timber flows from the pine forests are substantially impacted by forest fires. We present a methodology for integrating fire risk in Maritime pine stand-level management optimization in Portugal. The objective is to determine the optimal prescription for a stand where fire risk is related to its structure and fuel load. The study optimizes the thinning treatments and the rotation length, as well as the fuel treatment schedule, i.e., reduction of understory cover during the rotation. Two components of wildfire risk—occurrence and damage—are considered. Fire damage was treated as an endogenous factor depending on the stand management schedule while fire occurrence was considered exogenous. A preliminary model that relates the expected loss to stand basal area, mean tree diameter and fire severity was used for this purpose. The article demonstrates how a deterministic stand-level growth and yield model may be combined with wildfire occurrence and damage models to optimize stand management. The Hooke-Jeeves direct search method was used to find the optimal prescription. In addition, population-based direct search methods (e.g. differential evolution and particle swarm optimization) were used for further testing purposes. Results are presented for Maritime pine stand management in Leiria National Forest in Portugal. They confirm that fuel treatments improve profitability and reduce the expected damage.

This is a preview of subscription content, access via your institution.

References

  1. Amacher, G. S., Ollikainen, M., & Koskella, E. (2009). Economics of forest resources (397 p.). Cambridge: MIT Press.

    Google Scholar 

  2. Amacher, G., Malik, A., & Haight, R. (2005). Not getting burned: the importance of fire prevention in forest management. Land Economics, 81(2), 284–302.

    Google Scholar 

  3. Bazaraa, M. S., Sherali, H. D., & Shetty, C. M. (1993). Nonlinear programming. Theory and algorithms (2nd ed.). Hoboken: Wiley (ISBN 0-471-55793-5). 639 p.

    Google Scholar 

  4. Bayer, H.-G., & Schwefel, H.-P. (2002). Evolution strategies. A comprehensive introduction. Natural Computing, 1, 3–52.

    Article  Google Scholar 

  5. Botequim, B., Borges, P., Carreiras, J., Oliveira, M. M. O., & Borges, J. (2009). Development of a shrub growth model in understory conditions (preliminary model) (Technical Report-7). FORCHANGE, Instituto Superior de Agronomia, Lisboa.

  6. Borges, J. G., & Falcão, A. (1999). Programação dinâmica e gestão de povoamentos com estrutura regular e composição pura. Aplicação à Mata Nacional de Leiria. Revista Florestal, XII(1/2), 69–82.

    Google Scholar 

  7. Brazee, R., & Mendelsohn, R. (1988). Timber harvesting with fluctuating prices. Forest Science, 34, 359–372.

    Google Scholar 

  8. Bright, G., & Price, C. (2000). Valuing forest land under hazards to crop survival. Forestry, 73(4), 361–370.

    Article  Google Scholar 

  9. Brodie, J. D., & Kao, C. (1979). Optimizing thinning in Douglas-fir with three-descriptor dynamic programming to account for accelerated diameter growth. Forest Science, 25(4), 665–672.

    Google Scholar 

  10. Buongiorno, J., & Gilless, J. K. (1987). Forest management and economics: a primer in quantitative methods (biological resource management). (285 p.). New York: Macmillan, ISBN: 9780029487402.

    Google Scholar 

  11. Castro, F. X., Tudela, A., & Sebastia, M. T. (2003). Modelling moisture content in shrubs to predict fire risk in Catalonia (Spain). Agricultural and Forest Meteorology, 116, 49–59.

    Article  Google Scholar 

  12. Cauldfield, J. P. (1988). A stochastic efficiency approach for determining the economic rotation of a forest stand. Forest Science, 34(2), 441–457.

    Google Scholar 

  13. Davis, L. S., Johnson, K. N., Bettinger, P. S., & Howard, T. E. (2001). Forest management to sustain ecological, economic, and social values (4th ed.) New York: McGraw-Hill.

    Google Scholar 

  14. DGRF (2006). Resultados do Inventário Florestal Nacional 2005/2006, 5a Revisão, Direcção-Geral dos Recursos Florestais, Lisboa, 70 pp.

  15. Dickinson, M. B., & Johnson, E. A. (2001). Fire effects on trees. In E. A. Johnson & K. Miyanishi (Eds.), Forest fires: behavior and ecological effects (pp. 477–525). San Francisco: Academic Press.

    Chapter  Google Scholar 

  16. Dieter, M. (2001). Land expectation values for spruce and beech calculated with Monte Carlo modelling techniques. Forest Policy and Economics, 2, 157–166.

    Article  Google Scholar 

  17. Englin, J. P., Boxall, P., & Hauer, G. (2000). An empirical examination of optimal rotations in a multiple-use forest in the presence of fire risk. Journal of Agricultural and Resource Economics, 25, 14–27.

    Google Scholar 

  18. Falcão, A. (1999). DUNAS—A growth model for the National Forest of Leiria. In Proceedings of IUFRO workshop empirical and process-based models for forest tree and stand growth simulation, 21–27 Setembro 1997, Oeiras.

    Google Scholar 

  19. Fernandes, P. A. M. (2001). Fire spread prediction in shrub fuels in Portugal. 2001. Forest Ecology and Management, 144(1–3), 67–74.

    Article  Google Scholar 

  20. Fernandes, P. M., & Rigolot, E. (2007). The fire ecology and management of maritime pine (Pinus pinaster Ait.). Forest Ecology and Management, 241, 1–13.

    Article  Google Scholar 

  21. Ferreira, L., Constantino, M., & Borges, J. G. (2011a). A stochastic approach to optimize Maritime pine (Pinus pinaster Ait.) stand management scheduling under fire risk. An application in Portugal. Annals of Operation Research doi:10.1007/s10479-011-0845-z (Published online January 2011).

    Google Scholar 

  22. Ferreira, L., Constantino, M., Borges, J. G., & Garcia-Gonzalo, J. (2011b). A stochastic dynamic programming approach to optimize short-rotation coppice systems management scheduling. An application to eucalypt plantations under wild re risk in Portugal. Submitted manuscript.

  23. Finney, M. A. (1994). Modeling the spread and behavior of prescribed natural fires. In Proc. 12th international conference on fire and forest meteorology. (pp. 138–143). 26–28 October 1993, Jekyll Island, GA. Soc. Am. For.

    Google Scholar 

  24. Garcia-Gonzalo, J., Marques, S., Borges, J. G., Botequim, B., Oliveira, M. M., Tomé, J., & Tomé, M. (2011). A three-step approach to post-fire mortality modelling in Maritime pine (Pinus pinaster Ait) stands for enhanced forest planning in Portugal. Forestry. doi:10.1093/forestry/CPR006.

    Google Scholar 

  25. González, J. R., Palahí, M., Trasobares, T., & Pukkala, T. (2005a). A fire probability model for forest stands in Catalonia (north-east Spain). Annals of Forest Science 63:169–176.

    Article  Google Scholar 

  26. González-Olabarría, J. R., Pukkala, T., & Palahí, M., (2005b). Optimising the management of Pinus sylvestris L. stand under risk of fire in Catalonia (north-east of Spain). Annals of Forest Science 62:493–501.

    Article  Google Scholar 

  27. González, J. R., Trasobares, T., Palahí, M., & Pukkala, T. (2007). Predicting stand damage and tree survival in burned forests in Catalonia (North-East Spain). Annals of Forest Science, 64, 733–742.

    Article  Google Scholar 

  28. González-Olabarría, J. R., Palahí, M., Pukkala, T., & Trasobares, A. (2008). Optimising the management of Pinus nigra Arn. stands under endogenous risk of fire in Catalonia. Investigaciones Agrarias: Sistemas y Recursos Forestales, 17(1), 10–17.

    Google Scholar 

  29. Hély, C., Bergeron, Y., & Flannigan, M. D. (2003). Modeling tree mortality following wildfire in the southeastern Canadian mixed-wood boreal forest. Forest Science, 49, 566–576.

    Google Scholar 

  30. Hooke, R., & Jeeves, T. A. (1961). “Direct search” solution of numerical and statistical problems. Journal of the Association for Computing Machinery, 8, 212–229.

    Article  Google Scholar 

  31. Hyytiäinen, K. (2003). Integrating economics and ecology in stand-level timber production. Finnish Forest Research Institute, Research Papers 908: 42 pp.

  32. Kao, C. (1982). Optimal stocking levels and rotation under risk. Forest Science, 28(4), 711–719.

    Google Scholar 

  33. Kao, C., & Brodie, J. D. (1979). Determination of optimal thinning entry interval using dynamic programming. Forest Science, 25, 672–674.

    Google Scholar 

  34. Keely, J. E. (2009). Fire intensity, fire severity and burn severity: a brief review and suggested usage. International Journal of Wildland Fire, 18, 116–126.

    Article  Google Scholar 

  35. Keyes, C.R., & O’Hara, K.L. (2002). Quantifying stand targets for silvicultural prevention of crown fires. Western Journal of Applied Forestry 17(2):101–109.

    Google Scholar 

  36. Kennedy, J., & Eberhart, R. C. (1995). Particle swarm optimization. In Proceedings of the 1995 IEEE international conference on neural networks, Perth, Australia, IEEE Service Center, Piscataway, NJ, IV. pp. 1942–1948.

    Google Scholar 

  37. Lohmander, P., & Helles, F. (1987). Windthrow probability as a function of stand characteristics and shelter. Scandinavian Journal of Forest Research, 2(2), 227–238.

    Article  Google Scholar 

  38. Marques, S., Borges, J. G., Garcia-Gonzalo, J., Moreira, F., Carreiras, J. M. B., Oliveira, M. M., Cantarinha, A., Botequim, B., & Pereira, J. M. C. (2011a). Characterization of wildfires in Portugal. Eur. J. Forest Res. doi:10.1007/s10342-010-0470-4.

  39. Marques, S., Botequim, B., Garcia-Gonzalo, J., Borges, J. G., Tomé, M., & Oliveira, M. M. (2011b). Assessing wildfire risk probability in Pinus pinaster Ait. stands in Portugal. Submitted manuscript.

  40. Martell, D. L. (1980). The optimal rotation of a flammable forest stand. Canadian Journal of Forest Research, 10, 30–34.

    Article  Google Scholar 

  41. Martell, D. L. (2007). In A. Weintraub, C. Romero, T. Bjorndal, & R. Epstein (Eds.), Forest fire management, handbook of operations research in natural resources (pp. 489–510). Berlin: Springer.

    Google Scholar 

  42. McDill, M. E., & Amateis, R. L. (1992). Measuring forest site quality using the parameters of a dimensionally compatible height growth function. Forest Science, 38(2), 409–429.

    Google Scholar 

  43. Miina, J. (1996). Optimising thinning and rotation in a stand of Pinus sylvestris on a drained peatland site. Scandinavian Journal of Forest Research 11(1):182–192.

    Article  Google Scholar 

  44. Miina J., (1998). Preparation of management models using simulation and optimisation. In Pukkala T., Eerikäinen K. (Eds.), Tree seedling production and management of plantation forests, University of Joensuu, Faculty of Forestry, Research Notes 68, pp. 165–180.

    Google Scholar 

  45. Moreira, F., & Russo, D. (2007). Modelling the impact of agricultural abandonment and wildfires on vertebrate diversity in Mediterranean Europe. Landscape Ecology, 22, 1461–1476.

    Article  Google Scholar 

  46. Möykkynen, T., Miina, J., & Pukkala, T. (2000). Optimising the management of a Picea abies stand under risk of butt rot. Forest Pathology, 30, 65–76.

    Article  Google Scholar 

  47. Nelder, J. A., & Mead, R. (1965). A simplex method for function minimization. The Computer Journal, 7, 308–313.

    Article  Google Scholar 

  48. Palahí, M., & Pukkala, T. (2003). Optimising the management of Scots pine (Pinus sylvestris L.) stands in Spain based on individual-tree models. Annals of Forest Science, 60, 105–114.

    Article  Google Scholar 

  49. Pasalodos-Tato, M., Pukkala, T., & Castedo-Dorado, F. (2009). Models for the optimal management of Pinus radiata D. Don in Galicia (north–western Spain) under risk of fire. Allgemeine Forst und Jagdzeitung, 180, 238–249.

    Google Scholar 

  50. Pasalodos-Tato, M., Pukkala, T., & Rojo Alboreca, A. (2010). Optimal management of Pinus pinaster in Galicia (north–western Spain) under endogenous risk of fire. Int. J. Wildland Fire. In press.

  51. Pollet, J., & Omi, P. N. (2002). Effect of thinning and prescribed burning on wildfire severity in ponderosa pine forests. International Journal of Wildland Fire, 11, 1–10.

    Article  Google Scholar 

  52. Pukkala, T., & Miina, J. (1997). A method for stochastic multiobjective optimisation of stand management. Forest Ecology and Management, 98, 189–203.

    Article  Google Scholar 

  53. Pukkala, T. (2009). Population-based methods in the optimization of stand management. Silva Fennica, 43(2), 261–274.

    Article  Google Scholar 

  54. Reed, W. J. (1984). The effect of risk of fire on the optimal rotation of a forest. Journal of Environmental Economics and Management, 11(2), 180–190.

    Article  Google Scholar 

  55. Reed, W. J. (1987). Protecting a forest against fire: optimal protection patterns and harvest policies. Natural Resources Modeling, 2, 23–53.

    Google Scholar 

  56. Reed, W. J. (1993). The decision to conserve or harvest old-growth forest. Ecological Economics, 8(1), 45–69.

    Article  Google Scholar 

  57. Reed, W. J., & Errico, D. (1985). Assessing the long-run yield of a forest stand subject to the risk of fire. Canadian Journal of Forest Research, 15(4), 680–687.

    Article  Google Scholar 

  58. Roise, J. P. (1986). An approach to optimizing residual diameter class distributions when thinning even-aged stands. Forest Science, 32, 871–881.

    Google Scholar 

  59. Routledge, R. D. (1980). The effect of potential catastrophic mortality and others unpredictable events on optimal forest rotation policy. Forest Science, 26(3), 389–399.

    Google Scholar 

  60. Simões, S. M. (2006). Expansão ao Alentejo e Algarve de uma curva de acumulaçao pós-fogo para a biomassa arbustiva. Tese de Mestrado, Instituto Superior de Agronomia, Universidade Técinica de Lisboa, Lisboa.

  61. Storn, R., & Price, K. (1997). Differential evolution—a simple and efficient heuristic for global optimization over continuous spaces. Journal of Global Optimization, 11, 341–359.

    Article  Google Scholar 

  62. Thorsen, B. J., & Helles, F. (1998). Optimal stand management with endogenous risk of sudden destruction. Forest Ecology and Management, 108, 287–299.

    Article  Google Scholar 

  63. Van Wagner, C. E. (1973). Height of crown scorch in forest fires. Canadian Journal of Forest Research 3:373–378.

    Article  Google Scholar 

  64. Van Wagner, C. E. (1977). Conditions for the start and spread of crown fire. Canadian Journal of Forest Research, 7, 23–34.

    Article  Google Scholar 

  65. Valsta, L. T. (1990). A comparison of numerical methods for optimizing even aged stand management. Canadian Journal of Forest Research, 20, 961–969.

    Article  Google Scholar 

  66. Vélez, R. (2002). Causes of fires in the Mediterranean Basin. In EFI proceedings (Vol. 45, pp. 35–42).

    Google Scholar 

  67. Vega, J. A. (2001). Efectos del fuego prescrito sobre el suelo en pinares de Pinus pinaster Ait. de Galicia. PhD Thesis, Universidad Politécnica de Madrid, ETSIM, Madrid.

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to J. Garcia-Gonzalo.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Garcia-Gonzalo, J., Pukkala, T. & Borges, J.G. Integrating fire risk in stand management scheduling. An application to Maritime pine stands in Portugal. Ann Oper Res 219, 379–395 (2014). https://doi.org/10.1007/s10479-011-0908-1

Download citation

Keywords

  • Optimization
  • Simulation-optimization system
  • Forest planning
  • Wildfire risk
  • Fuel treatment
  • Pinus pinaster Ait