Skip to main content
Log in

Optimal engineering design via Benders’ decomposition

  • Published:
Annals of Operations Research Aims and scope Submit manuscript

Abstract

The optimal engineering design problem consists in minimizing the expected total cost of an infrastructure or equipment, including construction and expected repair costs, the latter depending on the failure probabilities of each failure mode. The solution becomes complex because the evaluation of failure probabilities using First-Order Reliability Methods (FORM) involves one optimization problem per failure mode. This paper formulates the optimal engineering design problem as a bi-level problem, i.e., an optimization problem constrained by a collection of other interrelated optimization problems. The structure of this bi-level problem is advantageously exploited using Benders’ decomposition to develop and report an efficient algorithm to solve it. An advantage of the proposed approach is that the design optimization and the reliability calculations are decoupled, resulting in a structurally simple algorithm that exhibits high computational efficiency. Bi-level problems are non-convex by nature and Benders algorithm is intended for convex optimization. However, possible non-convexities can be detected and tackled using simple heuristics. Its practical interest is illustrated through a realistic but simple case study, a breakwater design example with two failure modes: overtopping and armor instability.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Babonneau, F., Beltran, C., Haurie, A., Tadonki, C., & Vial, J. P. (2007). Proximal-ACCPM: a versatile oracle based optimization method. In E. J. Kontoghiorghes & C. Gatu (Eds.), Optimisation, econometric and financial analysis, advances in computational management science (Vol. 9, pp. 69–92). Berlin: Springer.

    Google Scholar 

  • Benders, J. F. (1962). Partitioning procedures for solving mixed-variables programming problems. Numerische Mathematik, 4, 238–252.

    Article  Google Scholar 

  • Bertsekas, D. P., & Sandell, N. R. (1982). Estimates of the duality gap for large-scale separable nonconvex optimization problems. In 21st IEEE conference on decision and control (pp. 782–785).

    Google Scholar 

  • Cai, X., McKinney, D. C., Lasdon, L. S., & Watkins, D. W. (2001). Solving large nonconvex water resources management models using generalized Benders decomposition. Operations Research, 49(2), 235–245.

    Article  Google Scholar 

  • Castillo, C., Mínguez, R., Castillo, E., & Losada, M. (2006a). An optimal engineering design method with failure rate constraints and sensitivity analysis. Application to composite breakwaters. Coastal Engineering, 53(1), 1–25.

    Article  Google Scholar 

  • Castillo, E., Losada, M., Mínguez, R., Castillo, C., & Baquerizo, A. (2004). An optimal engineering design method that combines safety factors and failure probabilities: application to rubble-mound breakwaters. Journal of Waterways, Ports, Coastal and Ocean Engineering, ASCE, 130(2), 77–88.

    Article  Google Scholar 

  • Castillo, E., Conejo, A. J., Castillo, C., Mínguez, R., & Ortigosa, D. (2006b). Perturbation approach to sensitivity analysis in nonlinear programming. Journal of Optimization Theory and Applications, 128(1), 49–74.

    Article  Google Scholar 

  • Colson, B., Marcotte, P., & Savard, G. (2005). Bilevel programming: a survey. Operation Research, 3(2), 87–108.

    Google Scholar 

  • Conejo, A. J., Castillo, E., Mínguez, R., & García-Bertrand, R. (2006). Decomposition techniques in mathematical programming. Engineering and science applications. Berlin/Heidelberg/New York: Springer.

    Google Scholar 

  • Cordeau, J. F., Soumis, F., & Desrosiers, J. (2000). A benders decomposition approach for the locomotive and car assignment problem. Transportation Science, 34(2), 133–149.

    Article  Google Scholar 

  • Cordeau, J. F., Soumis, F., & Desrosiers, J. (2001). Simultaneous assignment of locomotives and cars to passenger trains. Operations Research, 49(4), 531–548.

    Article  Google Scholar 

  • Cordeau, J. F., Pasin, F., & Solomon, M. (2006). An integrated model for logistics network design. Annals of Operations Research, 144(24), 59–82.

    Article  Google Scholar 

  • Costa, A. M. (2005). A survey on Benders decomposition applied to fixed-charge network design problems. Computers & Operations Research, 32(6), 1429–1450.

    Article  Google Scholar 

  • Ditlevsen, O., & Madsen, H. O. (1996). Structural reliability methods. Chichester/New York: Wiley.

    Google Scholar 

  • Drud, A. (1996). CONOPT: a system for large scale nonlinear optimization. Reference manual for CONOPT subroutine library, ARKI Consulting and Development A/S, Bagsvaerd, Denmark.

  • Enevoldsen, I., & Sorensen, J. D. (1994). Reliability-based optimization in structural engineering. Structural Safety, 15(3), 169–196.

    Article  Google Scholar 

  • Florian, M., Bushell, G., Ferland, J., Guérin, G., & Nastansky, L. (1976). The engine scheduling problem in a railway network. Infor, 14(2), 121–138.

    Google Scholar 

  • Frangopol, D. M. (1995). Reliability-based optimum structural design. In C. Sundarajan (Ed.), Probabilistic structural mechanics handbook (pp. 352–387). New York: Chapmam & Hall. Chapter 16.

    Google Scholar 

  • Gasser, M., & Schuëller, G. I. (1998). Some basic principles in reliability-based optimization (RBO) of structures and mechanical components. In K. Marti & P. Kall (Eds.), Lecture notes in economics and mathematical systems: Vol. 458. Stochastic programming methods and technical applications (pp. 11–103). Berlin: Springer.

    Chapter  Google Scholar 

  • Geoffrion, A. M. (1972). Generalized benders decomposition. JOTA, 10(4), 237–260.

    Article  Google Scholar 

  • Geoffrion, A. M., & Graves, G. W. (1974). Multicommodity distribution system-design by benders decomposition. Management Science Series A, Theory, 20(5), 822–844.

    Article  Google Scholar 

  • Lasdon, L. S. (1970). Optimization theory for large systems. New York: MacMillan.

    Google Scholar 

  • Madsen, H. O., & Friis Hansen, P. (1992). A comparison of some algorithms for reliability-based structural optimization and sensitivity analysis. In R. Rackwitz & P. Thoft-Christensen (Eds.), Reliability and optimization of structural systems (pp. 443–451). Berlin: Springer.

    Chapter  Google Scholar 

  • Mínguez, R., & Castillo, M. (2009). Reliability-based optimization in engineering using decomposition techniques and FORMS. Structural Safety, 31(3), 214–223.

    Article  Google Scholar 

  • Mínguez, R., Castillo, E., Castillo, C., & Losada, M. (2006). Optimal cost design with sensitivity analysis using decomposition techniques. Application to composite breakwaters. Structural Safety, 28(4), 321–340.

    Article  Google Scholar 

  • Mínguez, R., Milano, F., Zárate-Miñano, R., & Conejo, A. J. (2007). Optimal network placement of SVC devices. IEEE Transactions on Power Systems, 22(4), 1851–1860.

    Article  Google Scholar 

  • Nataf, A. (1962). Détermination des distribution de probabilités dont les marges sont données. Comptes Rendus de l’Academie des Sciences, 225, 42–43.

    Google Scholar 

  • Rosenblatt, M. (1952). Remarks on a multivariate transformation. Annals of Mathematical Statistics, 23(3), 470–472.

    Article  Google Scholar 

  • Royset, J. O., Der Kiureghian, A., & Polak, E. (2001a). Reliability-based optimal structural design by the decoupling approach. Reliability Engineering & System Safety, 73(3), 213–221.

    Article  Google Scholar 

  • Royset, J. O., Der Kiureghian, A., & Polak, E. (2001b). Reliability-based optimal design of series structural systems. Journal of Engineering Mechanics, ASCE, 127(6), 607–614.

    Article  Google Scholar 

  • Royset, J. O., Der Kiureghian, A., & Polak, E. (2006). Optimal design with probabilistic objective and constraints. Journal of Engineering Mechanics, ASCE, 132(1), 107–118.

    Article  Google Scholar 

  • Saharidis, G. K., & Ierapetritou, M. G. (2009). Resolution method for mixed integer bilevel linear problems based on decomposition technique. Journal of Global Optimization, 44(1), 29–51.

    Article  Google Scholar 

  • Saharidis, G. K. D., & Ierapetritou, M. G. (2010). Improving benders decomposition using maximum feasible subsystem (mfs) cut generation strategy. Computers & Chemical Engineering, 34(8), 1237–1245.

    Article  Google Scholar 

  • Saharidis, G. K. D., Michel, M., & Ierapetritou, M. G. (2010). Accelerating benders method using covering cut bundle generation. International Transactions in Operational Research, 17(2), 221–237.

    Article  Google Scholar 

  • Zhao, G. (2001). A log-barrier method with Benders decomposition for solving two-stage stochastic linear programs. Mathematical Programming, 90(3), 507–536.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Roberto Mínguez.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mínguez, R., Conejo, A.J. & Castillo, E. Optimal engineering design via Benders’ decomposition. Ann Oper Res 210, 273–293 (2013). https://doi.org/10.1007/s10479-011-0890-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10479-011-0890-7

Keywords

Navigation