Entropy programming modeling of IBNR claims reserves


The key focus of the paper is the introduction of a new deterministic approach to outstanding claims reserving in general insurance. The goals are to present a class of entropy programming models for determining claims reserves estimates; to justify popular simple techniques like the chain ladder technique and the separation method; to establish close connection of entropy programming models with log-linear models, maximum likelihood estimates; and to suggest new methods in the entropy programming framework.

This is a preview of subscription content, access via your institution.


  1. Bornhutter, R. L., & Ferguson, R. E. (1972). The actuary and IBNR. In Proceedings of the casualty actuarial society: Vol. LIX (pp. 181–195).

    Google Scholar 

  2. Bregman, L. (1967). The relaxation method of finding the common points of convex sets and its application to the solution of problems in convex programming. USSR Computational Mathematics and Mathematical Physics, 7, 200–217.

    Article  Google Scholar 

  3. Buhlmann, H. (1983). Estimation of IBNR reserves by the methods chain ladder, cape cod, and complementary loss ratio. Unpublished.

  4. Csiszár, I. (1967). Information type measures of difference of probability distributions and indirect observations. Studia Scientiarum Mathematicarum Hungarica, 2, 299–318.

    Google Scholar 

  5. Encyclopedia (2004). Encyclopedia of actuarial science. New York: Wiley.

    Google Scholar 

  6. England, P. D., & Verrall, R. J. (2002). Stochastic claims reserving in general insurance. British Actuarial Journal, 8, 443–544.

    Article  Google Scholar 

  7. Fang, S.-C., Rajasekera, J. R., & Tsao, H. S. J. (1997). Entropy optimization and mathematical programming. In Kluwer’s international series. Dordrecht: Kluwer.

    Google Scholar 

  8. Iusem, A. N., Svaiter, B. F., & Teboulle, M. (1994). Entropy-like proximal methods in convex programming. Mathematics of Operations Research, 19, 790–814.

    Article  Google Scholar 

  9. Kaas, R., Goovaerts, M., Dhaene, J., & Denuit, M. (2001). Modern actuarial risk theory. Dordrecht: Kluwer.

    Google Scholar 

  10. Kas, P., & Klafszky, E. (1993). On the duality of the mixed entropy programming. Optimization, 27(3), 253–258.

    Article  Google Scholar 

  11. Kiwiel, K. C. (1997). Proximal minimization methods with generalized Bregman functions. SIAM Journal on Control and Optimization, 35, 1142–1168.

    Article  Google Scholar 

  12. Mack, T. (1993). Distribution free calculation of the standard error of chain ladder estimates. ASTIN Bulletin, 23(2), 213–225.

    Article  Google Scholar 

  13. Mangasarian, O. L. (1969). Nonlinear programming. New York: McGraw-Hill.

    Google Scholar 

  14. Stanard, J. N. (1985). A simulation test of prediction errors of loss reserve estimation techniques. Proceedings of the Casualty Actuarial Society, LXXII, 124–148.

    Google Scholar 

  15. Venter, G. (2006). Discussion of the mean square error of prediction in the chain ladder reserving method. ASTIN Bulletin, 36(2), 566–571.

    Article  Google Scholar 

Download references

Author information



Corresponding author

Correspondence to Éva Komáromi.

Additional information

The research was supported by the Hungarian National Research Grant No. 77420-2009.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Komáromi, É. Entropy programming modeling of IBNR claims reserves. Ann Oper Res 200, 93–108 (2012). https://doi.org/10.1007/s10479-011-0882-7

Download citation


  • IBNR claims reserve
  • Entropy programming
  • Convex programming
  • Chain ladder technique
  • Multiplicative models
  • Generalized linear models
  • Maximum likelihood estimates