Skip to main content
Log in

Improving the computational efficiency in a global formulation (GLIDE) for interactive multiobjective optimization

  • Published:
Annals of Operations Research Aims and scope Submit manuscript

Abstract

In this paper, we present a new general formulation for multiobjective optimization that can accommodate several interactive methods of different types (regarding various types of preference information required from the decision maker). This formulation provides a comfortable implementation framework for a general interactive system and allows the decision maker to conveniently apply several interactive methods in one solution process. In other words, the decision maker can at each iteration of the solution process choose how to give preference information to direct the interactive solution process, and the formulation enables changing the type of preferences, that is, the method used, whenever desired. The first general formulation, GLIDE, included eight interactive methods utilizing four types of preferences. Here we present an improved version where we pay special attention to the computational efficiency (especially significant for large and complex problems), by eliminating some constraints and parameters of the original formulation. To be more specific, we propose two new formulations, depending on whether the multiobjective optimization problem to be considered is differentiable or not. Some computational tests are reported showing improvements in all cases. The generality of the new improved formulations is supported by the fact that they can accommodate six interactive methods more, that is, a total of fourteen interactive methods, just by adjusting parameter values.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Benayoun, R., de Montgolfier, J., Tergny, J., & Laritchev, O. (1971). Linear programming with multiple objective functions: Step method (STEM). Mathematical Programming, 1(3), 366–375.

    Article  Google Scholar 

  • Buchanan, J. T. (1997). A naïve approach for solving MCDM problems: the GUESS method. Journal of the Operational Research Society, 48, 202–206.

    Google Scholar 

  • Caballero, R., Luque, M., Molina, J., & Ruiz, F. (2002). PROMOIN: an interactive system for multiobjective programming. International Journal of Information Technology & Decision Making, 1(4), 635–656.

    Article  Google Scholar 

  • Chankong, V., & Haimes, Y. Y. (1978). The interactive surrogate worth trade-off (ISWT) method for multiobjective decision-making. In S. Zionts (Ed.), Multiple criteria problem solving (pp. 42–67). Berlin: Springer.

    Chapter  Google Scholar 

  • Chankong, V., & Haimes, Y. Y. (1983). Multiobjective decision making theory and methodology. New York: Elsevier Science.

    Google Scholar 

  • Chinchuluun, A., & Pardalos, P. M. (2007). A survey of recent developments in multiobjective optimization. Annals of Operations Research, 154(1), 29–50.

    Article  Google Scholar 

  • Deb, K., & Miettinen, K. (2010). Nadir point estimation using evolutionary approaches: better accuracy and computational speed through focused search. In M. Ehrgott, B. Naujoks, T. J. Stewart, & J. Wallenius (Eds.), Multiple criteria decision making for sustainable energy and transportation systems (pp. 339–354). Berlin/Heidelberg: Springer.

    Chapter  Google Scholar 

  • Deb, K., Miettinen, K., & Chaudhuri, S. (2010). Towards an estimation of nadir objective vector using a hybrid of evolutionary and local search approaches. IEEE Transactions on Evolutionary Computation, 14(6), 821–841.

    Article  Google Scholar 

  • Eschenauer, H. A., Osyczka, A., & Schäfer, E. (1990). Interactive multicriteria optimization in design process. In H. Eschenauer, J. Koski, & A. Osyczka (Eds.), Multicriteria design optimization procedures and applications (pp. 71–114). Berlin: Springer.

    Chapter  Google Scholar 

  • Fletcher, R. (2000). Practical methods of optimization (2nd ed.). New York: Wiley.

    Google Scholar 

  • Fonseca, C. M., & Fleming, P. J. (1995). An overview of evolutionary algorithms in multi-objective optimization. Evolutionary Computation, 3(1), 1–16.

    Article  Google Scholar 

  • Gardiner, L. R., & Steuer, R. E. (1994a). Unified interactive multiple objective programming. European Journal of Operational Research, 74(3), 391–406.

    Article  Google Scholar 

  • Gardiner, L. R., & Steuer, R. E. (1994b). Unified interactive multiple objective programming: an open architecture for accommodating new procedures. Journal of the Operational Research Society, 45(12), 1456–1466.

    Google Scholar 

  • Gass, S., & Saaty, T. (1955). The computational algorithm for the parametric objective function. Naval Research Logistics Quaterly, 2(1–2), 39–45.

    Article  Google Scholar 

  • Gill, P. E., Murray, W. W., & Wright, M. H. (1981). Practical optimization. London/New York: Academic Press.

    Google Scholar 

  • Goldfarb, D., & Idnani, A. (1983). A numerically stable dual method for solving strictly convex quadratic problems. Mathematical Programming, 27, 1–33.

    Article  Google Scholar 

  • Grauer, M., Lewandowski, A., & Wierzbicki, A. P. (1984). DIDASS—theory, implementation and experiences. In M. Grauer & A. P. Wierzbicki (Eds.), Interactive decision analysis (pp. 22–30). Berlin: Springer.

    Google Scholar 

  • Hakanen, J., Kawajiri, Y., Miettinen, K., & Biegler, L. T. (2007). Interactive multi-objective optimization for simulated moving bed processes. Control and Cybernetics, 36(2), 283–302.

    Google Scholar 

  • Heikkola, E., Miettinen, K., & Nieminen, P. (2006). Multiobjective optimization of an ultrasonic transducer using NIMBUS. Ultrasonics, 44(4), 368–380.

    Article  Google Scholar 

  • Hwang, C. L., & Masud, A. S. M. (1979). Multiple objective decision making—methods and applications: a state-of-the-art survey. Berlin: Springer.

    Book  Google Scholar 

  • Kaliszewski, I. (2004). Out of the mist—towards decision-maker-friendly multiple criteria decision making support. European Journal of Operational Research, 158(2), 293–307.

    Article  Google Scholar 

  • Korhonen, P., & Laakso, J. (1986). A visual interactive method for solving the multiple criteria problem. European Journal of Operational Research, 24(2), 277–287.

    Article  Google Scholar 

  • Korhonen, P., & Wallenius, J. (1988). A Pareto race. Naval Research Logistics, 35(6), 615–623.

    Article  Google Scholar 

  • Laukkanen, T., Tveit, T.-M., Ojalehto, V., Miettinen, K., & Fogelholm, C.-J. (2010). An interactive multi-objective approach to heat exchanger network synthesis. Computers and Chemical Engineering, 34(6), 943–952.

    Article  Google Scholar 

  • Lewandowski, A., Kreglewski, T., Rogowski, T., & Wierzbicki, A. P. (1989). Didass—theory, implementation and experiences. In A. Lewandowski & A. P. Wierzbicki (Eds.), Aspiration based decision support systems: theory, software and applications (pp. 21–47). Berlin: Springer.

    Google Scholar 

  • Luque, M., Yang, J. B., & Wong, B. Y. H. (2009). PROJECT method for multiobjective optimization based on the gradient projection and reference point. IEEE Transactions on Systems, Man and Cybernetics—Part A: Systems and Humans, 39(4), 864–879.

    Article  Google Scholar 

  • Luque, M., Ruiz, F., & Steuer, R. E. (2010). Modified interactive Chebyshev algorithm (MICA) for convex multiobjective programming. European Journal of Operational Research, 204(3), 557–564.

    Article  Google Scholar 

  • Luque, M., Ruiz, F., & Miettinen, K. (2011). Global formulation for interactive multiobjective optimization. OR Spectrum, 33(1), 27–48.

    Article  Google Scholar 

  • Miettinen, K. (1999). Nonlinear multiobjective optimization. Boston: Kluwer Academic.

    Google Scholar 

  • Miettinen, K., & Hakanen, J. (2009). Why use interactive multi-objective optimization in chemical process design? In G. P. Rangaiah (Ed.), Multi-objective optimization: techniques and applications in chemical engineering (pp. 153–188). World Scientific: Singapore.

    Google Scholar 

  • Miettinen, K., & Mäkelä, M. M. (1995). Interactive bundle-based method for nondifferentiable multiobjective optimization: NIMBUS. Optimization, 34(3), 231–246.

    Article  Google Scholar 

  • Miettinen, K., & Mäkelä, M. M. (2006). Synchronous approach in interactive multiobjective optimization. European Journal of Operational Research, 170(7–8), 909–922.

    Article  Google Scholar 

  • Miettinen, K., Mäkelä, M. M., & Kaario, K. (2006). Experiments with classification-based scalarizing functions in interactive multiobjective optimization. European Journal of Operational Research, 175(2), 931–947.

    Article  Google Scholar 

  • Miettinen, K., Ruiz, F., & Wierzbicki, A. (2008). Introduction to multiobjective optimization: interactive approaches. In J. Branke, K. Deb, K. Miettinen, & R. Słowiński (Eds.), Multiobjective optimization: interactive and evolutionary approaches (pp. 27–57). Berlin/Heidelberg: Springer.

    Google Scholar 

  • NAG (2000). Numerical algorithm group limited: NAG C library manual. Mark 6. Oxford: NAG.

    Google Scholar 

  • Nakayama, H., & Sawaragi, Y. (1984). Satisficing trade-off method for multiobjective programming. In M. Grauer & A. P. Wierzbicki (Eds.), Interactive decision analysis (pp. 113–122). Berlin: Springer.

    Google Scholar 

  • Ogryczak, W., & Lahoda, S. (2006). Aspiration/reservation-based decision support—a step beyond goal programming. Journal of Multi-Criteria Decision Analysis, 1(2), 101–117.

    Article  Google Scholar 

  • Pinter, J. D. (2001). Computational global optimization in nonlinear systems: an interactive tutorial. Atlanta: Lionheart.

    Google Scholar 

  • Pinter, J. D. (2006). Nonlinear optimization with MPL/LGO: introduction and user’s guide. Technical report, Maximal Software and PCS.

  • Romero, C. (1993). Extended lexicographic goal programming: a unified approach. Omega, 29(1), 63–71.

    Article  Google Scholar 

  • Ruotsalainen, H., Boman, E., Miettinen, K., & Tervo, J. (2009). Nonlinear interactive multiobjective optimization method for radiotherapy treatment planning with Boltzmann transport equation. Contemporary Engineering. Sciences, 2(9), 391–422.

    Google Scholar 

  • Sakawa, M. (1982). Interactive multiobjective decision making by the sequential proxy optimization technique: SPOT. European Journal of Operational Research, 9(4), 386–396.

    Article  Google Scholar 

  • Sawaragi, Y., Nakayama, H., & Tanino, T. (1985). Theory of multiobjective optimization. Orlando: Academic Press.

    Google Scholar 

  • Steuer, R. E. (1986). Multiple criteria optimization: theory, computation and application. New York: Wiley.

    Google Scholar 

  • Steuer, R. E., & Choo, E. U. (1983). An interactive weighted Tchebycheff procedure for multiple objective programming. Mathematical Programming, 26(1), 326–344.

    Article  Google Scholar 

  • Vassilev, V., & Narula, S. C. (1993). A reference direction algorithm for solving multiple objective integer linear programming problems. Journal of the Operational Research Society, 44(12), 1201–1209.

    Google Scholar 

  • Vassilev, V., Narula, S. C., & Gouljashki, V. G. (2001). An interactive reference direction algorithm for solving multi-objective convex nonlinear integer programming problems. International Transactions in Operational Research, 8(4), 367–380.

    Article  Google Scholar 

  • Wierzbicki, A. P. (1980). The use of reference objectives in multiobjective optimization. In G. Fandel & T. Gal (Eds.), Multiple criteria decision making, theory and applications (pp. 468–486). Berlin: Springer.

    Chapter  Google Scholar 

  • Wierzbicki, A. P., Makowski, M., & Wessels, J. (Eds.) (2000). Model-based decision support methodology with environmental applications. Dordrecht: Kluwer Academic.

    Google Scholar 

  • Yang, J. B. (1999). Gradient projection and local region search for multiobjective optimization. European Journal of Operational Research, 112(2), 432–459.

    Article  Google Scholar 

  • Zadeh, L. (1963). Optimality and non-scalar-valued performance criteria. IEEE Transactions on Automatic Control, 8(1), 59–60.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kaisa Miettinen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ruiz, F., Luque, M. & Miettinen, K. Improving the computational efficiency in a global formulation (GLIDE) for interactive multiobjective optimization. Ann Oper Res 197, 47–70 (2012). https://doi.org/10.1007/s10479-010-0831-x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10479-010-0831-x

Keywords

Navigation