Skip to main content
Log in

Stochastic programming for off-line adaptive radiotherapy

  • Published:
Annals of Operations Research Aims and scope Submit manuscript

Abstract

In intensity-modulated radiotherapy (IMRT), a treatment is designed to deliver high radiation doses to tumors, while avoiding the healthy tissue. Optimization-based treatment planning often produces sharp dose gradients between tumors and healthy tissue. Random shifts during treatment can cause significant differences between the dose in the “optimized” plan and the actual dose delivered to a patient. An IMRT treatment plan is delivered as a series of small daily dosages, or fractions, over a period of time (typically 35 days). It has recently become technically possible to measure variations in patient setup and the delivered doses after each fraction. We develop an optimization framework, which exploits the dynamic nature of radiotherapy and information gathering by adapting the treatment plan in response to temporal variations measured during the treatment course of a individual patient. The resulting (suboptimal) control policies, which re-optimize before each fraction, include two approximate dynamic programming schemes: certainty equivalent control (CEC) and open-loop feedback control (OLFC). Computational experiments show that resulting individualized adaptive radiotherapy plans promise to provide a considerable improvement compared to non-adaptive treatment plans, while remaining computationally feasible to implement.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Beckham, W., Keall, P., & Siebers, J. (2002). A fluence-convolution method to calculate radiation therapy dose distributions that incorporate random set-up error. Physics in Medicine Biology, 47, 3465–3473.

    Article  Google Scholar 

  • Bentel, G. C. (1999). Patient positioning and immobilization in radiation oncology. New York: McGraw-Hill.

    Google Scholar 

  • Bertsekas, D. P. (2005). Dynamic programming and optimal control (Vol. 1, 3 ed.). Belmont: Athena Scientific.

    Google Scholar 

  • Birge, J. R., & Louveaux, F. (1997). Introduction to stochastic programming. New York: Springer.

    Google Scholar 

  • Bortfeld, T., & Paganetti, H. (2006). The biologic relevance of daily dose variations in adaptive treatment planning. International Journal of Radiation, Oncology, Biology, Physics, 65, 899–906.

    Article  Google Scholar 

  • Bortfeld, T., van Herk, M., & Jiang, S. (2002). When should systematic patient positioning errors in radiotherapy be corrected? Physics in Medicine Biology, 47, N297–N302.

    Article  Google Scholar 

  • Bortfeld, T., Jiang, S., & Rietzel, E. (2004). Effects of motion on the total dose distribution. Seminars in Radiation Oncology, 14, 41–51.

    Article  Google Scholar 

  • Chetty, I., Rosu, M., Tyagi, N., Marsh, L. H., McShan, D. L., Balter, J. M., Fraass, B. A., & Ten Haken, R. K. (2003). A fluence convolution method to account for respiratory motion in three-dimensional dose calculations for liver: A Monte Carlo study. Medical Physics, 30, 1776–1780.

    Article  Google Scholar 

  • Choi, B., & Deasy, J. O. (2002). The generalized equivalent uniform dose function as a basis for intensity-modulated treatment planning. Physics in Medicine Biology, 47, 3579–3589.

    Article  Google Scholar 

  • Chu, M., Zinchenko, Y., Henderson, S. G., & Sharpe, M. B. (2005). Robust optimization for intensity modulated radiation therapy treatment planning under uncertainty. Physics in Medicine Biology, 50, 5463–5477.

    Article  Google Scholar 

  • Craft, D., Halabi, T., & Bortfeld, T. (2005). Exploration of tradeoffs in intensity-modulated radiotherapy. Physics in Medicine Biology, 50, 5857–5868.

    Article  Google Scholar 

  • de la Zerda, A., Armbruster, B., & Xing, L. (2007). Formulating adaptive radiation therapy (art) treatment planning into a closed-loop control framework. Physics in Medicine Biology, 52, 4137–4153.

    Article  Google Scholar 

  • Diwekar, U., Rico-Ramirez, V., Kim, K. J., & Sahin, K. (2002). Optimization under uncertainty. SIAG/OPT Views-and-News, 13(1).

  • Ferris, M., & Voelker, M. (2004). Fractionation in radiation treatment planning. Mathematical Programming, Ser. B, 101, 387–413.

    Google Scholar 

  • Herman, M. G., Balter, J. M., Jaffray, D. A., McGee, K. P., Munro, P., Shalev, S., van Herk, M., & Wong, J. W. (2001). Clinical use of electronic portal imaging: Report of AAPM radiation therapy committee task group 58. Medical Physics, 28, 712–737.

    Article  Google Scholar 

  • ICRU (1993). Prescribing, recording and reporting photon beam therapy ICRU Report 50. Technical Report 50, International Commission on Radiation Units and Measurements (ICRU), Bethesda, MD.

  • ICRU (1999). Prescribing, recording and reporting photon beam therapy (Supplement to ICRU Report 50). Technical Report 62, International Commission on Radiation Units and Measurements (ICRU), Bethesda, MD.

  • Keller, H., Ritter, M., & Mackie, T. (2003). Optimal stochastic correction strategies for rigid-body target motion. International Journal of Radiation, Oncology, Biology, Physics, 55, 261–270.

    Article  Google Scholar 

  • Keller, H., Tome, W., Ritter, M. A., & Mackie, T. R. (2004). Design of adaptive treatment margins for non-negligible measurement uncertainty: application to ultrasound-guided prostate radiation therapy. Physics in Medicine Biology, 49, 69–86.

    Article  Google Scholar 

  • Kelley, J. E. (1960). The cutting-plane method for solving convex programs. Journal of the Society for Industrial Applied Mathematics, 8, 703–712.

    Article  Google Scholar 

  • Kessler, M. L., Mcshan, D. L., Epelman, M. A., Vineberg, K. A., Eisbruch, A., Lawrence, T. S., & Fraass, B. A. (2005). Costlets: a generalized approach to cost functions for automated optimization of IMRT treatment plans. Optimization and Engineering, 6, 421–448.

    Article  Google Scholar 

  • Koshani, R., Balter, J. M., Hayman, J. A., Henning, G. T., & van Herk, M. (2006). Short-term and long-term reproducibility of lung tumor position using active breathing control (ABC). International Journal of Radiation, Oncology, Biology, Physics, 65, 1553–1559.

    Article  Google Scholar 

  • Küfer, K. A., Scherrer, A., & Monz, M. (2003). Intensity-modulated radiotherapy - a large scale multi-criteria programming problem. OR Spectrum, 25, 223–249.

    Article  Google Scholar 

  • Lam, K. L., Ten Haken, R. K., Litzenberg, D., Balter, J. M., & Pollock, S. M. (2005). An application of bayesian statistical methods to adaptive radiotherapy. Physics in Medicine Biology, 50, 3849–3858.

    Article  Google Scholar 

  • Lam, K. L., Balter, J. M., & Ten Haken, R. K. (2007). Effect of daily localization and correction on the setup uncertainty: dependences on the measurement uncertainty, re-positioning uncertainty and action level. Physics in Medicine Biology, 52, 6575–6587.

    Article  Google Scholar 

  • Lee, E., Fox, T., & Crocker, I. (2003). Integer programming applied to intensity-modulated radiation therapy treatment planning. Annals of Operations Research, 165–181.

  • Löf, J., Lind, B. K., & Brahme, A. (1995). Optimal radiation beam profiles considering the stochastic process of patient positioning in fractionated radiation therapy. Inverse Problems, 11, 1189–1209.

    Article  Google Scholar 

  • Lujan, A. E., Ten Haken, R. K., Larsen, E. W., & Balter, J. M. (1999). Quantization of setup uncertainties in 3-D dose calculations. Medical Physics, 26, 2397–2402.

    Article  Google Scholar 

  • Martinez, A., Yan, D., Lockman, D., Brabbins, D., Kota, K., Sharpe, M., Jaffray, D. A., Vicini, F., & Wong, J. (2000). Improvement in dose escalation using the process of adaptive radiotherapy combined with three-dimensional conformal or intensity-modulated beams for prostate cancer. IntRad, 48, 289–302.

    Google Scholar 

  • McNutt, T. R., Mackie, T. R., & Paliwal, B. R. (1997). Analysis and convergence of the iterative convolution/superposition dose reconstruction technique for multiple treatment beams and tomotherapy. Medical Physics, 24, 1465–1476.

    Article  Google Scholar 

  • McShan, D. L., Kessler, M. L., Vineberg, K., & Fraass, B. A. (2006). Inverse plan optimization accounting for random geometric uncertainties with a multiple instance geometry approximation (MIGA). Medical Physics, 33, 1510–1521.

    Article  Google Scholar 

  • Mestrovic, A., Milette, M., Nichol, A., Clark, B. G., & Otto, K. (2007). Direct aperture optimization for online adaptive radiation therapy. Medical Physics, 34, 1631–1646.

    Article  Google Scholar 

  • Niemierko, A. (1999). A generalized concept of equivalent uniform dose (EUD) (abstract). Medical Physics, 26, 1100.

    Google Scholar 

  • Partridge, M., Ebert, M., & Hesse, B. M. (2002). IMRT verification by three-dimensional dose reconstruction from portal beam measurements. Medical Physics, 29, 1847–1858.

    Article  Google Scholar 

  • Perez, C. A., & Brady, L. W. (1998). Principles and practice of radiotherapy. Philadelphia: Lippincott-Raven.

    Google Scholar 

  • Petric, M. P., Clark, B. G., & Robar, J. L. (2005). A comparison of two commercial treatment-planning systems to IMRT. Journal of Applied Clinical Medical Physics, 6, 63–80.

    Article  Google Scholar 

  • Pickle, L. W., Hao, Y., Jemal, A., Zou, Z., Tiwari, R. C., Ward, E., Hachey, M., Howe, H. L., & Feuer, E. J. (2007). A new method of estimating united states and state-level cancer incidence counts for the current calendar year. CA Cancer Journal for Clinicians, 57, 30–42.

    Article  Google Scholar 

  • Rehbinder, H., Forsgren, C., & Löf, J. (2004). Adaptive radiation therapy for compensation of errors in patient setup and treatment delivery. Medical Physics, 31, 3363–3371.

    Article  Google Scholar 

  • Romeijn, H. E., Ahuja, R. K., Dempsey, J. F., Kumar, A., & Li, J. G. (2003). A novel linear programming approach to fluence map optimization for intensity modulated radiation therapy treatment planning. Physics in Medicine Biology, 48, 3521–3542.

    Article  Google Scholar 

  • Ruszczynski, A., & Shapiro, A. (2003). Handbooks in operations research and management science: Stochastic Programming (Vol. 10). Amsterdam: Elsevier.

    Google Scholar 

  • Schewe, J. E., Balter, J. M., Lam, K. L., & Ten Haken, R. K. (1996). Measurement of patient setup errors using port films and a computer-aided graphical alignment tool. Medical Dosimetry, 21, 97–104.

    Article  Google Scholar 

  • Schlegel, W., Bortfeld, T., & Grosu, A. L. (2006). New technologies in radiation oncology. Medical radiology / radiation oncology. Berlin: Springer.

    Book  Google Scholar 

  • Shepard, D. M., Ferris, M. C., Olivera, G. H., & Mackie, T. R. (1999). Optimizing the delivery of radiation therapy to cancer patients. SIAM Review, 41, 721–744.

    Article  Google Scholar 

  • Sir, M. Y. (2007). Optimization of radiotherapy considering uncertainties caused by daily setup procedures and organ motion. PhD thesis, The University of Michigan, Ann Arbor, MI.

  • Sir, M. Y., Pollock, S. M., Epelman, M. A., Lam, K. L., & Ten Haken, R. K. (2006). Ideal spatial radiotherapy dose distributions subject to positional uncertainties. Physics in Medicine Biology, 51, 6329–6347.

    Article  Google Scholar 

  • Stone, H. B., Coleman, C. N., Anscher, M. S., & McBride, W. H. (2003). Effects of radiation on normal tissue: consequences and mechanisms. Lancet Oncology, 4, 529–536.

    Article  Google Scholar 

  • Thames, H. D., & Hendry, J. H. (1987). Fractionation in radiotherapy. London: Taylor and Francis.

    Google Scholar 

  • Thieke, C., Bortfeld, T., & Küfer, K. (2002). Characterization of dose distributions through the max and mean dose concept. Acta Oncologica, 41, 158–161.

    Article  Google Scholar 

  • Thongphiew, D., Chankong, V., Yin, F., & Wu, Q. J. (2008). An online adaptive radiation therapy system for intensity modulated radiation therapy: An application of multi-objective optimization. JIMO, 4, 453–475.

    Article  Google Scholar 

  • Ulmer, W., & Harder, D. (1995). A triple gaussian pencil beam model for photon beam treatment planning. Zeitschrift Für Medizinische Physik, 5, 25–30.

    Google Scholar 

  • van Herk, M. (2004). Errors and margins in radiotherapy. Seminars in Radiation Oncology, 14, 52–64.

    Article  Google Scholar 

  • van Herk, M., Remeijer, P., Rasch, C., & Lebesque, J. V. (2000). The probability of correct target dosage: dose-population histograms for deriving treatment margins in radiotherapy. International Journal of Radiation, Oncology, Biology, Physics, 47, 1121–1135.

    Article  Google Scholar 

  • Webb, S. (2005). Contemporary IMRT: developing physics and clinical implementation. Bristol and Philadelphia: Institute of Physics Publishing.

    Google Scholar 

  • Wong, J. W., Sharpe, M. B., Jaffray, D. A., Kini, V. R., Roberson, J. M., Stromberg, J. S., & Martinez, A. (1999). The use of active breathing control (ABC) to reduce margin for breathing motion. International Journal of Radiation, Oncology, Biology, Physics, 44, 911–999.

    Article  Google Scholar 

  • Wu, C., Jeraj, R., Olivera, G., & Mackie, T. (2002). Re-optimization in adaptive radiotherapy. Physics in Medicine Biology, 47, 3181–3195.

    Article  Google Scholar 

  • Wu, Q., Liang, J., & Yan, D. (2006). Application of dose compensation in image-guided radiotherapy of prostate cancer. Physics in Medicine Biology, 51, 1405–1419.

    Article  Google Scholar 

  • Yan, D. (2006). Image-guided/adaptive radiotherapy. In New technologies in radiation oncology. Medical Radiology (pp. 321–336). Berlin: Springer.

    Chapter  Google Scholar 

  • Yan, D., Vicini, F., Wong, J., & Martinez, A. (1997a). Adaptive radiation therapy. Physics in Medicine Biology, 42, 123–132.

    Article  Google Scholar 

  • Yan, D., Wong, J., Vicini, F., Michalski, J., Pan, C., Frazier, A., Horwitz, E., & Martinez, A. (1997b). Adaptive modification of treatment planning to minimize the deleterious effects of treatment setup errors. International Journal of Radiation, Oncology, Biology, Physics, 38, 197–206.

    Article  Google Scholar 

  • Yan, D., Lockman, D., Brabbins, D., Tyburski, L., & Martinez, A. (2000). An off-line strategy for constructing a patient-specific planning target volume in adaptive treatment process for prostate cancer. International Journal of Radiation, Oncology, Biology, Physics, 48, 289–302.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mustafa Y. Sir.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sir, M.Y., Epelman, M.A. & Pollock, S.M. Stochastic programming for off-line adaptive radiotherapy. Ann Oper Res 196, 767–797 (2012). https://doi.org/10.1007/s10479-010-0779-x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10479-010-0779-x

Keywords

Navigation