Skip to main content
Log in

Variable neighbourhood search: methods and applications

  • Published:
Annals of Operations Research Aims and scope Submit manuscript

Abstract

Variable neighbourhood search (VNS) is a metaheuristic, or a framework for building heuristics, based upon systematic changes of neighbourhoods both in descent phase, to find a local minimum, and in perturbation phase to emerge from the corresponding valley. It was first proposed in 1997 and has since then rapidly developed both in its methods and its applications. In the present paper, these two aspects are thoroughly reviewed and an extensive bibliography is provided. Moreover, one section is devoted to newcomers. It consists of steps for developing a heuristic for any particular problem. Those steps are common to the implementation of other metaheuristics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Abraham, A., Liu, H., & Zhao, M. (2008). Particle swarm scheduling for work-flow applications in distributed computing environments. Studies in Computational Intelligence, 128, 327–342.

    Google Scholar 

  • Alba, E., & Domínguez, E. (2006). Comparative analysis of modern optimization tools for the p-median problem. Statistics and Computing, 16(3), 251–260.

    Google Scholar 

  • Almada-Lobo, B., Oliveira, J. F., & Carravilla, M. A. (2008). Production planning and scheduling in the glass container industry: A VNS approach. International Journal of Production Economics, 114(1), 363–375.

    Google Scholar 

  • Aloise, D. J., Aloise, D., Rocha, C. T. M., Ribeiro, C. C., Ribeiro, J. C., & Moura, L. S. S. (2006). Scheduling workover rigs for onshore oil production. Discrete Applied Mathematics, 154(5), 695–702.

    Google Scholar 

  • Amaldi, E., Liberti, L., Maffioli, F., & Maculan, N. (2009). Edge-swapping algorithms for the minimum fundamental cycle basis problem. Mathematical Methods of Operations Research, 69(2), 205–233.

    Google Scholar 

  • Andreatta, A., & Ribeiro, C. (2002). Heuristics for the phylogeny problem. Journal of Heuristics, 8(4), 429–447.

    Google Scholar 

  • Anghinolfi, D., & Paolucci, M. (2007). Parallel machine total tardiness scheduling with a new hybrid metaheuristic approach. Computers and Operations Research, 34(11), 3471–3490.

    Google Scholar 

  • Aouchiche, M., & Hansen, P. (2005). Recherche à voisinage variable de graphes extrèmes 13. À propos de la maille. RAIRO Operations Research, 39, 275–293 (French).

    Google Scholar 

  • Aouchiche, M., & Hansen, P. (2007a). Automated results and conjectures on average distance in graphs. Graph Theory in Paris, Trends in Mathematics, VI, 21–36.

    Google Scholar 

  • Aouchiche, M., & Hansen, P. (2007b). On a conjecture about the Randic index. Discrete Mathematics, 307, 262–265.

    Google Scholar 

  • Aouchiche, M., & Hansen, P. (2008a). Bounding average distance using order and minimum degree. Les Cahiers du GERAD G-2008-35. To appear in Graph Theory Notes of New York.

  • Aouchiche, M., & Hansen, P. (2008b). Nordhaus-Gaddum relations for proximity and remoteness in graphs. Les Cahiers du GERAD G-2008-36.

  • Aouchiche, M., Caporossi, G., & Cvetković, D. (2001). Variable neighborhood search for extremal Variations on Graffiti 105graphs 8. Congressus Numerantium, 148, 129–144.

    Google Scholar 

  • Aouchiche, M., Bonnefoy, J. M., Fidahoussen, A., Caporossi, G., Hansen, P., Hiesse, L., Lacheré, J., & Monhait, A. (2005a). Variable neighborhood search for extremal graphs 14. The AutoGraphiX 2 system. In L. Liberti & N. Maculan (Eds.), Global optimization: from theory to implementation (pp. 281–309). Berlin: Springer.

    Google Scholar 

  • Aouchiche, M., Caporossi, G., Hansen, P., & Laffay, M. (2005b). AutoGraphiX: a survey. Electronic Notes in Discrete Mathematics, 22, 515–520.

    Google Scholar 

  • Aouchiche, M., Hansen, P., & Stevanović, D. (2005c). Variable neighborhood search for extremal graphs 17. Further conjectures and results about the index. Les Cahiers du GERAD G-2005-78. To appear in Discusiones Mathematicae: Graph Theory.

  • Aouchiche, M., Hansen, P., & Zheng, M. (2006). Variable neighborhood search for extremal graphs 18. Conjectures and results about the Randic index. MATCH Communications in Mathematical and Computer Chemistry, 56(3), 541–550.

    Google Scholar 

  • Aouchiche, M., Caporossi, G., & Hansen, P. (2007a). Variable neighborhood search for extremal graphs 20. Automated comparison of graph invariants. MATCH Communications in Mathematical and Computer Chemistry, 58(2), 365–384.

    Google Scholar 

  • Aouchiche, M., Caporossi, G., & Hansen, P. (2007b). Variable neighborhood search for extremal graphs 27. Families of extremal graphs. Les Cahiers du GERAD G-2007-87.

  • Aouchiche, M., Favaron, O., & Hansen, P. (2007c). Recherche à voisinage variable de graphes extrèmes 26. Nouveaux résultats sur la maille (French). Les Cahiers du GERAD G-2007-55.

  • Aouchiche, M., Hansen, P., & Zheng, M. (2007d). Variable neighborhood search for extremal graphs 19. Further conjectures and results about the Randic index. MATCH Communications in Mathematical and Computer Chemistry, 58(1), 83–102.

    Google Scholar 

  • Aouchiche, M., Bell, F. K., Cvetković, D., Hansen, P., Rowlinson, P., Simić, S. K., & Stevanović, D. (2008). Variable neighborhood search for extremal graphs 16. Some conjectures related to the largest eigenvalue of a graph. European Journal of Operational Research, 191(3), 661–676.

    Google Scholar 

  • Aouchiche, M., Brinkmann, G., & Hansen, P. (2009a). Variable neighborhood search for extremal graphs 21. Conjectures and results about the independence number. Discrete Applied Mathematics, 156(13), 2530–2542.

    Google Scholar 

  • Aouchiche, M., Favaron, O., & Hansen, P. (2009b). Variable neighborhood search for extremal graphs 22. Extending bounds for independence to upper irredundance. Discrete Applied Mathematics. doi:10.1016/j.dam.2009.04.004.

    Google Scholar 

  • Archetti, C., Hertz, A., & Speranza, M. G. (2007). Metaheuristics for the team orienteering problem. Journal of Heuristics, 13(1), 49–76.

    Google Scholar 

  • Audet, C., Brimberg, J., Hansen, P., & Mladenović, N. (2004). Pooling problem: alternate formulation and solution methods. Management Science, 50, 761–776.

    Google Scholar 

  • Audet, C., Báchard, V., & Le Digabel, S. (2008). Nonsmooth optimization through mesh adaptive direct search and variable neighborhood search. Journal of Global Optimization, 41(2), 299–318.

    Google Scholar 

  • Avanthay, C., Hertz, A., & Zufferey, N. (2003). A variable neighborhood search for graph coloring. European Journal of Operational Research, 151(2), 379–388.

    Google Scholar 

  • Aydin, M. E., & Sevkli, M. (2008). Sequential and parallel variable neighborhood search algorithms for job shop scheduling. Studies in Computational Intelligence, 128, 125–144.

    Google Scholar 

  • Baum, E. B. (1986). Toward practical ‘neural’ computation for combinatorial optimization problems. In J. Denker (Ed.), Neural networks for computing. American Institute of Physics.

  • Behnamian, J., Fatemi Ghomi, S. M. T., & Zandieh, M. (2009a). A multi-phase covering Pareto-optimal front method to multi-objective scheduling in a realistic hybrid flowshop using a hybrid metaheuristic. Expert Systems with Applications, 36(8), 11057–11069.

    Google Scholar 

  • Behnamian, J., Zandieh, M., & Fatemi Ghomi, S. M. T. (2009b). Parallel-machine scheduling problems with sequence-dependent setup times using an ACO, SA and VNS hybrid algorithm. Expert Systems with Applications, 36(6), 9637–9644.

    Google Scholar 

  • Belacel, N., Hansen, P., & Mladenović, N. (2002). Fuzzy J-means: a new heuristic for fuzzy clustering. Pattern Recognition, 35(10), 2193–2200.

    Google Scholar 

  • Belacel, N., Čuperlović-Culf, M., Laflamme, M., & Ouellette, R. (2004a). Fuzzy J-means and VNS methods for clustering genes from microarray data. Bioinformatics, 20(11), 1690–1701.

    Google Scholar 

  • Belacel, N., Čuperlović-Culf, M., Ouellette, R., & Boulassel, M. R. (2004b). The variable neighborhood search metaheuristic for fuzzy clustering cDNA microarray gene expression data. In M. H. Hamza (Ed.), Artificial intelligence and applications. Calgary: Acta Press.

    Google Scholar 

  • Belacel, N., Raval, H. B., & Punnen, A. P. (2007). Learning multicriteria fuzzy classification method PROAFTN from data. Computers and Operations Research, 34(7), 1885–1898.

    Google Scholar 

  • Belhaiza, S., de Abreu, N., Hansen, P., & Oliveira, C. (2007). Variable neighborhood search for extremal graphs 11. Bounds on algebraic connectivity. In D. Avis, A. Hertz, & O. Marcotte (Eds.), Graph theory and combinatorial optimization (pp. 1–16).

  • Beltrán, J. D., Calderón, J. E., Jorge-Cabrera, R., Moreno-Pérez, J. A., & Moreno-Vega, J. M. (2004). GRASP-VNS hybrid for the strip packing problem. In Hybrid metaheuristics 2004 (pp. 79–90).

  • Benati, S. (2008). Categorical data fuzzy clustering: an analysis of local search heuristics. Computers and Operations Research, 35(3), 766–775.

    Google Scholar 

  • Benati, S., & Hansen, P. (2002). The maximum capture problem with random utilities: problem formulation and algorithms. European Journal of Operational Research, 143(3), 518–530.

    Google Scholar 

  • Bischoff, M., & Dächert, K. (2009). Allocation search methods for a generalized class of location-allocation problems. European Journal of Operational Research, 192(3), 793–807.

    Google Scholar 

  • Blazewicz, J., Pesch, E., Sterna, M., & Werner, F. (2005). Metaheuristics for late work minimization in two-machine flow shop with common due date. In Lecture notes in artificial intelligence (Vol. 3698, pp. 222–234). Berlin: Springer.

    Google Scholar 

  • Blazewicz, J., Pesch, E., Sterna, M., & Werner, F. (2008). Metaheuristic approaches for the two-machine flow-shop problem with weighted late work criterion and common due date. Computers and Operations Research, 35(2), 574–599.

    Google Scholar 

  • Bouffard, V., & Ferland, J. A. (2007). Improving simulated annealing with variable neighborhood search to solve the resource-constrained scheduling problem. Journal of Scheduling, 10(6), 375–386.

    Google Scholar 

  • Bräysy, O. (2003). A reactive variable neighborhood search for the vehicle routing problem with time windows. INFORMS Journal on Computing, 15(4), 347–368.

    Google Scholar 

  • Brimberg, J., & Mladenović, N. (1996). A variable neighborhood algorithm for solving the continuous location-allocation problem. Studies in Locational Analysis, 10, 1–12.

    Google Scholar 

  • Brimberg, J., Hansen, P., Mladenović, N., & Taillard, É. (2000). Improvements and comparison of heuristics for solving the multisource Weber problem. Operations Research, 48(3), 444–460.

    Google Scholar 

  • Brimberg, J., Hansen, P., Lih, K.-W., Mladenović, N., & Breton, M. (2003). An oil pipeline design problem. Operations Research, 51(2), 228–239.

    Google Scholar 

  • Brimberg, J., Mladenović, N., & Salhi, S. (2004). The multi-source Weber problem with constant opening cost. Journal of the Operational Research Society, 55, 640–646.

    Google Scholar 

  • Brimberg, J., Hansen, P., & Mladenović, N. (2006a). Decomposition strategies for large-scale continuous location–allocation problems. IMA Journal of Management Mathematics, 17, 307–316.

    Google Scholar 

  • Brimberg, J., Urošević, D., & Mladenović, N. (2006b). Variable neighborhood search for the vertex weighted k-cardinality tree problem. European Journal of Operational Research, 171(1), 74–84.

    Google Scholar 

  • Brimberg, J., Hansen, P., Laporte, G., Mladenović, N., & Urošević, D. (2008a). The maximum return-on-investment plant location problem with market share. Journal of the Operational Research Society, 59(3), 399–406.

    Google Scholar 

  • Brimberg, J., Mladenović, N., & Urošević, D. (2008b). Local and variable neighborhood search for the k-cardinality subgraph problem. Journal of Heuristics, 14(5), 501–517.

    Google Scholar 

  • Brimberg, J., Mladenović, N., Urošević, D., & Ngai, E. (2009). Variable neighborhood search for the heaviest k-subgraph. Computers and Operations Research, 36(11), 2885–2891.

    Google Scholar 

  • Brusco, M., & Steinley, D. (2007a). A variable neighborhood search method for generalized blockmodeling of two-mode binary matrices. Journal of Mathematical Psychology, 51(5), 325–338.

    Google Scholar 

  • Brusco, M. J., & Steinley, D. (2007b). A comparison of heuristic procedures for minimum within-cluster sums of squares partitioning. Psychometrika, 72(4), 583–600.

    Google Scholar 

  • Brusco, M. J., Köhn, H.-F., & Stahl, S. (2008). Heuristic implementation of dynamic programming for matrix permutation problems in combinatorial data analysis. Psychometrika, 73(3), 503–522.

    Google Scholar 

  • Brusco, M. J., Singh, R., & Steinley, D. (2009). Variable neighborhood search heuristics for selecting a subset of variables in principal component analysis. Psychometrika. doi:10.1007/s11336-009-9130-3.

    Google Scholar 

  • Burke, E. K., & Kendall, G. (2005). Search methodologies. Introductory tutorials in optimization and decision support techniques. Berlin: Springer.

    Google Scholar 

  • Burke, E. K., Cowling, P., & Keuthen, R. (2001). Effective local and guided variable neighborhood search methods for the asymmetric travelling salesman problem. In Lecture notes in computer science (Vol. 2037, pp. 203–212). Berlin: Springer.

    Google Scholar 

  • Canuto, S., Resende, M., & Ribeiro, C. (2001). Local search with perturbations for the prize-collecting Steiner tree problem in graphs. Networks, 31(3), 201–206.

    Google Scholar 

  • Caporossi, G., & Hansen, P. (2000). Variable neighborhood search for extremal graphs 1. The AutoGraphiX system. Discrete Mathematics, 212, 29–44.

    Google Scholar 

  • Caporossi, G., & Hansen, P. (2004). Variable neighborhood search for extremal graphs 5. Three ways to automate finding conjectures. Discrete Mathematics, 276(1–3), 81–94.

    Google Scholar 

  • Caporossi, G., Cvetković, D., Gutman, I., & Hansen, P. (1999a). Variable neighborhood search for extremal graphs 2. Finding graphs with extremal energy. Journal of Chemical Information and Computer Sciences, 39, 984–996.

    Google Scholar 

  • Caporossi, G., Dobrynin, A. A., Gutman, I., & Hansen, P. (1999b). Trees with palindromic Hosoya polynomials. Graph Theory Notes of New York, 37, 10–16.

    Google Scholar 

  • Caporossi, G., Gutman, I., & Hansen, P. (1999c). Variable neighborhood search for extremal graphs 4. Chemical trees with extremal connectivity index. Computers and Chemistry, 23(5), 469–477.

    Google Scholar 

  • Caporossi, G., Gutman, I., Hansen, P., & Pavlović, L. (2003). Graphs with maximum connectivity index. Computational Biology and Chemistry, 27, 85–90.

    Google Scholar 

  • Caporossi, G., Alamargot, D., & Chesnet, D. (2004). Using the computer to study the dynamics of the handwriting processes. In Lecture notes in computer science (Vol. 3245, pp. 242–254). Berlin: Springer.

    Google Scholar 

  • Carrabs, F., Cordeau, J.-F., & Laporte, G. (2007). Variable neighbourhood search for the pickup and delivery traveling salesman problem with LIFO loading. INFORMS Journal on Computing, 19(4), 618–632.

    Google Scholar 

  • Carrizosa, E., Martín-Barragán, B., Plastria, F., & Romero Morales, D. (2007). On the selection of the globally optimal prototype subset for nearest-neighbor classification. INFORMS Journal on Computing, 19(3), 470–479.

    Google Scholar 

  • Chen, C.-L., & Chen, C.-L. (2009). Hybrid metaheuristic for unrelated parallel machine scheduling with sequence-dependent setup times. International Journal of Advanced Manufacturing Technology, 43(1–2), 161–169.

    Google Scholar 

  • Chyu, C.-C., & Chen, Z.-J. (2009). Scheduling jobs under constant period-by-period resource availability to maximize project profit at a due date. International Journal of Advanced Manufacturing Technology, 42(5–6), 569–580.

    Google Scholar 

  • Claro, J., & de Sousa, J. P. (2008). A multiobjective metaheuristic for a mean-risk multistage capacity investment problem. Journal of Heuristics. doi:10.1007/s10732-008-9090-2.

    Google Scholar 

  • Consoli, S., Darby-Dowman, K., Mladenović, N., & Moreno Pérez, J. A. (2009a). Greedy randomized adaptive search and variable neighbourhood search for the minimum labelling spanning tree problem. European Journal of Operational Research, 196(2), 440–449.

    Google Scholar 

  • Consoli, S., Darby-Dowman, K., Mladenović, N., & Moreno-Pérez, J. A. (2009b). Variable neighbourhood search for the minimum labelling Steiner tree problem. Annals of Operations Research. doi:10.1007/s10479-008-0507-y.

    Google Scholar 

  • Costa, M. C., Monclar, F. R., & Zrikem, M. (2002). Variable neighborhood decomposition search for the optimization of power plant cable layout. Journal of Intelligent Manufacturing, 13(5), 353–365.

    Google Scholar 

  • Cote, P., Wong, T., & Sabourin, R. (2005). A hybrid multi-objective evolutionary algorithm for the uncapacitated exam proximity problem. In Lecture notes in computer science (Vol. 3616, pp. 294–312). Berlin: Springer.

    Google Scholar 

  • Cowling, P. I., & Keuthen, R. (2005). Embedded local search approaches for routing optimization. Computers and Operations Research, 32(3), 465–490.

    Google Scholar 

  • Crainic, T., Gendreau, M., Hansen, P., & Mladenović, N. (2004). Cooperative parallel variable neighborhood search for the p-median. Journal of Heuristics, 10, 289–310.

    Google Scholar 

  • Crispim, J., & Brandao, J. (2001). Reactive tabu search and variable neighborhood descent applied to the vehicle routing problem with backhauls. In MIC’2001 (pp. 631–636). Porto, 2001.

  • Cvetkovic, D., Simic, S., Caporossi, G., & Hansen, P. (2001). Variable neighborhood search for extremal graphs 3. On the largest eigenvalue of color-constrained trees. Linear and Multilinear Algebra, 49, 143–160.

    Google Scholar 

  • Czogalla, J., & Fink, A. (2008). On the effectiveness of particle swarm optimization and variable neighborhood descent for the continuous flow-shop scheduling problem. Studies in Computational Intelligence, 128, 61–89.

    Google Scholar 

  • Dahal, K., Remde, S., Cowling, P., & Colledge, N. (2008). Improving metaheuristic performance by evolving a variable fitness function. In Lecture notes in computer science (Vol. 4972, pp. 170–181). Berlin: Springer.

    Google Scholar 

  • Davidon, W. C. (1959). Variable metric algorithm for minimization. Argonne National Laboratory Report ANL-5990.

  • Davidović, T., Hansen, P., & Mladenović, N. (2005). Permutation-based genetic, tabu, and variable neighborhood search heuristics for multiprocessor scheduling with communication delays. Asia-Pacific Journal of Operational Research, 22(3), 297–326.

    Google Scholar 

  • De Paula, M. R., Ravetti, M. G., Mateus, G. R., & Pardalos, P. M. (2007). Solving parallel machines scheduling problems with sequence-dependent setup times using Variable Neighbourhood Search. IMA Journal of Management Mathematics, 18(2), 101–115.

    Google Scholar 

  • de Souza, M. C., & Martins, P. (2008). Skewed VNS enclosing second order algorithm for the degree constrained minimum spanning tree problem. European Journal of Operational Research, 191(3), 677–690.

    Google Scholar 

  • Degila, J. R., & Sansò, B. (2004). Topological design optimization of a Yottabit-per-second lattice network. IEEE Journal on Selected Areas in Communications, 22(9), 1613–1625.

    Google Scholar 

  • Del Pia, A., & Filippi, C. (2006). A variable neighborhood descent algorithm for a real waste collection problem with mobile depots. International Transactions in Operational Research, 13(2), 125–141.

    Google Scholar 

  • Desrosiers, J., Mladenović, N., & Villeneuve, D. (2005). Design of balanced MBA student teams. Journal of the Operational Research Society, 56(1), 60–66.

    Google Scholar 

  • Dias, T. C. S., de Sousa, G. F., Macambira, E. M., Cabral, L. D. A. F., & Fampa, M. H. C. (2006). An efficient heuristic for the ring star problem. In Lecture notes in computer science (Vol. 4007, pp. 24–35). Berlin: Springer.

    Google Scholar 

  • Domínguez-Marín, P., Nickel, S., Hansen, P., & Mladenović, N. (2005). Heuristic procedures for solving the discrete ordered median problem. Annals of Operations Research, 136(1), 145–173.

    Google Scholar 

  • Dražić, M., Kovacevic-Vujcić, V., Cangalović, M., & Mladenović, N. (2006). GLOB—A new VNS-based software for global optimization. In L. Liberti & N. Maculan (Eds.), Global optimization: from theory to implementation (pp. 135–144). Berlin: Springer.

    Google Scholar 

  • Dražić, M., Lavor, C., Maculan, N., & Mladenović, N. (2008). A continuous variable neighborhood search heuristic for finding the three-dimensional structure of a molecule. European Journal of Operational Research, 185(3), 1265–1273.

    Google Scholar 

  • Drezner, Z., Hahn, P. M., & Taillard, E. D. (2005). Recent advances for the quadratic assignment problem with special emphasis on instances that are difficult for meta-heuristic methods. Annals of Operations Research, 139(1), 65–94.

    Google Scholar 

  • du Merle, O., Villeneuve, D., Desrosiers, J., & Hansen, P. (1999). Stabilized column generation. Discrete Mathematics, 194(1–3), 229–237.

    Google Scholar 

  • du Merle, O., Hansen, P., Jaumard, B., & Mladenović, N. (2000). An interior point algorithm for minimum sum-of-squares clustering. SIAM Journal on Scientific Computing, 21, 1485–1505.

    Google Scholar 

  • Duarte, A., Sanchez, A., Fernandez, F., & Cabido, R. (2005). A low-level hybridization between memetic algorithm and VNS for the max-cut problem. In GECCO 2005—Genetic and evolutionary computation conference (pp. 999–1006).

  • Estellon, B., Gardi, F., & Nouioua, K. (2006). Large neighborhood improvements for solving car sequencing problems. RAIRO Operations Research, 40(4), 355–379.

    Google Scholar 

  • Estellon, B., Gardi, F., & Nouioua, K. (2008). Two local search approaches for solving real-life car sequencing problems. European Journal of Operational Research, 191(3), 928–944.

    Google Scholar 

  • Fathali, J., & Kakhki, H. T. (2006). Solving the p-median problem with pos/neg weights by variable neighborhood search and some results for special cases. European Journal of Operational Research, 170(2), 440–462.

    Google Scholar 

  • Felipe, Á., Ortuño, M. T., & Tirado, G. (2009). The double traveling salesman problem with multiple stacks: a variable neighborhood search approach. Computers and Operations Research, 36(11), 2983–2993.

    Google Scholar 

  • Festa, P., Pardalos, P. M., Resende, M. G. C., & Ribeiro, C. C. (2002). Randomized heuristics for the MAX-CUT problem. Optimization Methods and Software, 17(6), 1033–1058.

    Google Scholar 

  • Fischetti, M., & Lodi, A. (2003). Local branching. Mathematical Programming, 98(1–3), 23–47.

    Google Scholar 

  • Fischetti, M., Polo, C., & Scantamburlo, M. (2004). A local branching heuristic for mixed-integer programs with 2-level variables, with an application to a telecommunication network design problem. Networks, 44(2), 61–72.

    Google Scholar 

  • Fleszar, K., & Hindi, K. S. (2002). New heuristics for one-dimensional bin-packing. Computers and Operations Research, 29, 821–839.

    Google Scholar 

  • Fleszar, K., & Hindi, K. S. (2004). Solving the resource-constrained project scheduling problem by a variable neighborhood search. European Journal of Operational Research, 155(2), 402–413.

    Google Scholar 

  • Fleszar, K., & Hindi, K. S. (2008). An effective VNS for the capacitated p-median problem. European Journal of Operational Research, 191(3), 612–622.

    Google Scholar 

  • Fleszar, K., Osman, I. H., & Hindi, K. S. (2009). A variable neighbourhood search algorithm for the open vehicle routing problem. European Journal of Operational Research, 195(3), 803–809.

    Google Scholar 

  • Fletcher, R., & Powell, M. J. D. (1963). Rapidly convergent descent method for minimization. The Computer Journal, 6, 163–168.

    Google Scholar 

  • Fowler, P. W., Hansen, P., Caporossi, G., & Soncini, A. (2001). Variable neighborhood search for extremal graphs 7. Polyenes with maximum HOMO-LUMO gap. Chemical Physics Letters, 49, 143–146.

    Google Scholar 

  • Gagné, C., Gravel, M., & Price, W. L. (2005). Using metaheuristic compromise programming for the solution of multiple-objective scheduling problems. Journal of the Operational Research Society, 56, 687–698.

    Google Scholar 

  • Galinier, P., & Hertz, A. (2006). A survey of local search methods for graph coloring. Computers and Operations Research, 33(9), 2547–2562.

    Google Scholar 

  • Gao, J., Sun, L., & Gen, M. (2008). A hybrid genetic and variable neighborhood descent algorithm for flexible job shop scheduling problems. Computers and Operations Research, 35(9), 2892–2907.

    Google Scholar 

  • García, C. G., Pérez-Brito, D., Campos, V., & Martí, R. (2006). Variable neighborhood search for the linear ordering problem. Computers and Operations Research, 33(12), 3549–3565.

    Google Scholar 

  • García-López, F., Melián-Batista, B., Moreno-Pérez, J. A., & Moreno-Vega, J. M. (2002). The parallel variable neighborhood search for the p-median problem. Journal of Heuristics, 8(3), 375–388.

    Google Scholar 

  • Garey, M. R., & Johnson, D. S. (1978). Computers and intractability: A guide to the theory of NP-completeness. New York: Freeman.

    Google Scholar 

  • Garroi, J.-J., Goos, P., & Sörensen, K. (2009). A variable-neighbourhood search algorithm for finding optimal run orders in the presence of serial correlation. Journal of Statistical Planning and Inference, 139(1), 30–44.

    Google Scholar 

  • Gavranović, H. (2008). Local search and suffix tree for car-sequencing problem with colors. European Journal of Operational Research, 191(3), 972–980.

    Google Scholar 

  • Geiger, M. J., & Wenger, W. (2007). On the interactive resolution of multi-objective vehicle routing problems. In Lecture notes in artificial intelligence (Vol. 4403, pp. 687–699). Berlin: Springer.

    Google Scholar 

  • Geiger, M. J., & Wenger, W. (2009). On the assignment of students to topics: a Variable Neighborhood Search approach. Socio-Economic Planning Sciences. doi:10.1016/j.seps.2009.03.001.

    Google Scholar 

  • Gill, P., Murray, W., & Wright, M. (1981). Practical optimization. London: Academic Press.

    Google Scholar 

  • Glover, F., & Kochenberger, G. (Eds.) (2003). Handbook of metaheuristics. Amsterdam: Kluwer.

    Google Scholar 

  • Goel, A., & Gruhn, V. (2008). A general vehicle routing problem. European Journal of Operational Research, 191(3), 650–660.

    Google Scholar 

  • Griffith, R. E., & Stewart, R. A. (1961). A nonlinear programming technique for the optimization of continuous processing systems. Management Science, 7, 379–392.

    Google Scholar 

  • Gupta, S. R., & Smith, J. S. (2006). Algorithms for single machine total tardiness scheduling with sequence dependent setups. European Journal of Operational Research, 175(2), 722–739.

    Google Scholar 

  • Gutjahr, W. J., Katzensteiner, S., & Reiter, P. (2007). A VNS algorithm for noisy problems and its application to project portfolio analysis. In Lecture notes in computer science (Vol. 4665, pp. 93–104). Berlin: Springer.

    Google Scholar 

  • Gutman, I., Miljković, O., Caporossi, G., & Hansen, P. (1999). Alkanes with small and large Randić connectivity indices. Chemical Physics Letters, 306, 366–372.

    Google Scholar 

  • Gutman, I., Hansen, P., & Mélot, H. (2005). Variable neighborhood search for extremal graphs 10. Comparison of irregularity indices for chemical trees. Journal of Chemical Information and Modeling, 45, 222–230.

    Google Scholar 

  • Han, H., Ye, J., & Lv, Q. (2007). A VNS-ANT algorithm to QAP. In Third international conference on natural computation (Vol. 3, pp. 426–430).

  • Hansen, P. (2002). Computers in graph theory. Graph Theory Notes of New York, XLIII, 20–39.

    Google Scholar 

  • Hansen, P. (2005). How far is, should and could be conjecture-making in graph theory an automated process? In Dimacs series in discrete mathematics and theoretical computer science : Vol. 69. Graph and discovery (pp. 189–229). Providence: AMS.

    Google Scholar 

  • Hansen, P., & Mélot, H. (2002). Computers and discovery in algebraic graph theory. Linear Algebra and Applications, 356(1–3), 211–230.

    Google Scholar 

  • Hansen, P., & Mélot, H. (2003). Variable neighborhood search for extremal graphs 6. Analysing bounds for the connectivity index. Journal of Chemical Information and Computer Sciences, 43, 1–14.

    Google Scholar 

  • Hansen, P., & Mélot, H. (2005). The irregularity of a graph. In Dimacs series in discrete mathematics and theoretical computer science : Vol. 69. Graph and discovery (pp. 253–264). Providence: AMS.

    Google Scholar 

  • Hansen, P., & Mladenović, N. (1997). Variable neighborhood search for the p-median. Location Science, 5, 207–226.

    Google Scholar 

  • Hansen, P., & Mladenović, N. (1999). An introduction to variable neighborhood search. In S. Voss et al. (Eds.), Metaheuristics, advances, trends in local search paradigms for optimization (pp. 433–458). Amsterdam: Kluwer.

    Google Scholar 

  • Hansen, P., & Mladenović, N. (2001a). Variable neighborhood search: principles and applications. European Journal of Operational Research, 130, 449–467.

    Google Scholar 

  • Hansen, P., & Mladenović, N. (2001b). J-Means: a new local search heuristic for minimum sum-of-squares clustering. Pattern Recognition, 34, 405–413.

    Google Scholar 

  • Hansen, P., & Mladenović, N. (2001c). Developments of variable neighborhood search. In C. Ribeiro & P. Hansen (Eds.), Essays, surveys in metaheuristics (pp. 415–440). Amsterdam: Kluwer.

    Google Scholar 

  • Hansen, P., & Mladenović, N. (2003). Variable neighborhood search. In F. Glover & G. Kochenberger (Eds.), Handbook of metaheuristics (pp. 145–184). Amsterdam: Kluwer.

    Google Scholar 

  • Hansen, P., & Mladenović, N. (2006). First improvement may be better than best improvement: An empirical study. Discrete Applied Mathematics, 154, 802–817.

    Google Scholar 

  • Hansen, P., & Mladenović, N. (2008). Complement to a comparative analysis of heuristics for the p-median problem. Statistics and Computing, 18(1), 41–46.

    Google Scholar 

  • Hansen, P., & Perron, S. (2007). Algorithms for \(\mathcal{L.}_{1}\) -embeddability and related problems. Journal of Classification, 24(2), 251–275.

    Google Scholar 

  • Hansen, P., & Perron, S. (2008). Merging the local and global approaches to probabilistic satisfiability. International Journal of Approximate Reasoning, 47(2), 125–140.

    Google Scholar 

  • Hansen, P., & Stevanović, D. (2005). Variable neighborhood search for extremal graphs 15. On bags and bugs. Discrete Applied Mathematics, 156(7), 986–997.

    Google Scholar 

  • Hansen, P., & Vukičević, D. (2006). Variable neighborhood search for extremal graphs 23. On the Randic index and the chromatic number. Les Cahiers du GERAD G-2006-58. To appear in Discrete Mathematics.

  • Hansen, P., Jaumard, B., Mladenović, N., & Parreira, A. (2000). Variable neighborhood search for weighted maximum satisfiability problem. Les Cahiers du GERAD G–2000–62. HEC Montréal, Canada.

  • Hansen, P., Mladenović, N., & Pérez-Brito, D. (2001). Variable neighborhood decomposition search. Journal of Heuristics, 7(4), 335–350.

    Google Scholar 

  • Hansen, P., Mladenović, N., & Urošević, D. (2004). Variable neighborhood search for the maximum clique. Discrete Applied Mathematics, 145(1), 117–125.

    Google Scholar 

  • Hansen, P., Aouchiche, M., Caporossi, G., Mélot, H., & Stevanović, D. (2005a). What forms do interesting conjectures have in graph theory? In Dimacs series in discrete mathematics and theoretical computer science : Vol. 69. Graph and discovery (pp. 231–251). Providence: AMS.

    Google Scholar 

  • Hansen, P., Mélot, H., & Gutman, I. (2005b). Variable neighborhood search for extremal graphs 12. A note on the variance of bounded degrees in graphs. MATCH Communications in Mathematical and in Computer Chemistry, 54, 221–232.

    Google Scholar 

  • Hansen, P., Mladenović, N., & Urošević, D. (2006). Variable neighborhood search and local branching. Computers and Operations Research, 33(10), 3034–3045.

    Google Scholar 

  • Hansen, P., Brimberg, J., Urošević, D., & Mladenović, N. (2007a). Primal-dual variable neighborhood search for the simple plant location problem. INFORMS Journal on Computing, 19(4), 552–564.

    Google Scholar 

  • Hansen, P., Lazić, J., & Mladenović, N. (2007b). Variable neighbourhood search for colour image quantization. IMA Journal of Management Mathematics, 18(2), 207–221.

    Google Scholar 

  • Hansen, P., Mladenović, N., & Moreno Pérez, J. A. (2008a). Variable neighborhood search. European Journal of Operational Research, 191(3), 593–595.

    Google Scholar 

  • Hansen, P., Mladenović, N., & Moreno Pérez, J. A. (2008b). Variable neighborhood search: methods and applications. 4OR A Quarterly Journal of Operations Research, 6(4), 319–360.

    Google Scholar 

  • Hansen, P., Oǧuz, C., & Mladenović, N. (2008c). Variable neighborhood search for minimum cost berth allocation. European Journal of Operational Research, 191(3), 636–649.

    Google Scholar 

  • Hansen, P., Brimberg, J., Urošević, D., & Mladenović, N. (2009). Solving large p-median clustering problems by primal-dual variable neighborhood search. Data Mining and Knowledge Discovery. doi:10.1007/s10618-009-0135-4.

    Google Scholar 

  • Haugland, D. (2007). A bidirectional greedy heuristic for the subspace selection problem. In Lecture notes in computer science (Vol. 4638, pp. 162–176). Berlin: Springer.

    Google Scholar 

  • Hemmelmayr, V., Doerner, K. F., Hartl, R. F., & Savelsbergh, M. W. P. (2008). Delivery strategies for blood products supplies. OR Spectrum, 31(4), 707–725.

    Google Scholar 

  • Hemmelmayr, V. C., Doerner, K. F., & Hartl, R. F. (2009). A variable neighborhood search heuristic for the periodic routing problems. European Journal of Operational Research, 195(3), 791–802.

    Google Scholar 

  • Hertz, A., & Mittaz, M. (2001). A variable neighborhood descent algorithm for the undirected capacitated arc routing problem. Transportation Science, 35(4), 425–434.

    Google Scholar 

  • Hertz, A., Plumettaz, M., & Zufferey, N. (2008). Variable space search for graph coloring. Discrete Applied Mathematics, 156(13), 2551–2560.

    Google Scholar 

  • Higgins, A., Beashel, G., & Harrison, A. (2006). Scheduling of brand production and shipping within a sugar supply chain. Journal of the Operational Research Society, 57, 490–498.

    Google Scholar 

  • Hindi, K. S., Fleszar, K., & Charalambous, C. (2003). An effective heuristic for the CLSP with setup times. Journal of the Operational Research Society, 54(5), 490–498.

    Google Scholar 

  • Höller, H., Melián, B., & Voss, S. (2008). Applying the pilot method to improve VNS and GRASP metaheuristics for the design of SDH/WDM networks. European Journal of Operational Research, 191(3), 691–704.

    Google Scholar 

  • Hu, B., & Raidl, G. R. (2008). Effective neighborhood structures for the generalized traveling salesman problem. In Lecture notes in computer science (Vol. 4972, pp. 36–47). Berlin: Springer.

    Google Scholar 

  • Hu, B., Leitner, M., & Raidl, G. R. (2008). Combining variable neighborhood search with integer linear programming for the generalized minimum spanning tree problem. Journal of Heuristics, 14(5), 501–517.

    Google Scholar 

  • Imran, A., Salhi, S., & Wassan, N. A. (2009). A variable neighborhood-based heuristic for the heterogeneous fleet vehicle routing problem. European Journal of Operational Research, 197(2), 509–518.

    Google Scholar 

  • Irnich, S., Funke, B., & Grünert, T. (2006). Sequential search and its application to vehicle-routing problems. Computers and Operations Research, 33(8), 2405–2429.

    Google Scholar 

  • Jabalameli, M. S., & Ghaderi, A. (2008). Hybrid algorithms for the uncapacitated continuous location-allocation problem. The International Journal of Advanced Manufacturing Technology, 37(1–2), 202–209.

    Google Scholar 

  • Jarboui, B., Eddaly, M., & Siarry, P. (2009). An estimation of distribution algorithm for minimizing the total flowtime in permutation flowshop scheduling problems. Computers and Operations Research, 36(9), 2638–2646.

    Google Scholar 

  • Joly, A., & Frein, Y. (2008). Heuristics, for, an, industrial, car, sequencing, problem, considering, paint, and, assembly, shop, objectives. Computers and Industrial Engineering, 55(2), 295–310.

    Google Scholar 

  • Jornsten, K., & Lokketangen, A. (1997). Tabu, search, for, weighted, k-cardinality, trees. Asia-Pacific Journal of Operational Research, 14(2), 9–26.

    Google Scholar 

  • Jovanović, D., Mladenović, N., & Ognjanović, Z. (2007). Variable neighborhood search for the probabilistic satisfiability problem. In K. F. Doerner, M. Gendreau, P. Greistorfer, W. Gutjahr, R. F. Hartl, & M. Reimann (Eds.), Metaheuristics. Progress in complex systems optimization (pp. 173–188). Berlin: Springer.

    Google Scholar 

  • Karam, A., Caporossi, G., & Hansen, P. (2007). Arbitrary-norm hyperplane separation by Variable Neighbourhood Search. IMA Journal of Management Mathematics, 18(2), 173–190.

    Google Scholar 

  • Kawashimo, S., Ono, H., Sadakane, K., & Yamashita, M. (2006). DNA sequence design by dynamic neighborhood searches. In Lecture notes in computer science (Vol. 4287, pp. 157–171). Berlin: Springer.

    Google Scholar 

  • Kolisch, R., & Hartmann, S. (2006). Experimental investigation of heuristics for resource-constrained project scheduling: an update. European Journal of Operational Research, 174(1), 23–37.

    Google Scholar 

  • Kucherenko, S., Belotti, P., Liberti, L., & Maculan, N. (2007). New formulations for the Kissing number problem. Discrete Applied Mathematics, 155(14), 1837–1841.

    Google Scholar 

  • Kytöjoki, J., Nuortio, T., Bräysy, O., & Gendreau, M. (2007). An efficient variable neighborhood search heuristic for very large scale vehicle routing problems. Computers and Operations Research, 34(9), 2743–2757.

    Google Scholar 

  • Lapierre, S. D., Ruiz, A. B., & Soriano, P. (2004). Designing distribution networks: Formulations and solution heuristic. Transportation Science, 38(2), 174–187.

    Google Scholar 

  • Lejeune, M. A. (2006). A variable neighborhood decomposition search method for supply chain management planning problems. European Journal of Operational Research, 175(2), 959–976.

    Google Scholar 

  • Liang, Y.-C., & Chen, Y. C. (2007). Redundancy allocation of series-parallel systems using a variable neighborhood search algorithm. Reliability Engineering and System Safety, 92(3), 323–331.

    Google Scholar 

  • Liang, Y.-C., Lo, M.-H., & Chen, Y. C. (2007). Variable neighbourhood search for redundancy allocation problems. IMA Journal of Management Mathematics, 18(2), 135–156.

    Google Scholar 

  • Liao, C. J., & Cheng, C. C. (2007). A variable neighborhood search for minimizing single machine weighted earliness and tardiness with common due date. Computers and Industrial Engineering, 52(4), 404–413.

    Google Scholar 

  • Liao, C.-J., & Liao, C.-C. (2008). An ant colony optimisation algorithm for scheduling in agile manufacturing. International Journal of Production Research, 46(7), 1813–1824.

    Google Scholar 

  • Liao, C. J., Chao-Tang, T., & Luarn, P. (2007). A discrete version of particle swarm optimization for flowshop scheduling problems. Computers and Operations Research, 34(10), 3099–3111.

    Google Scholar 

  • Liberti, L., Lavor, C., Maculan, N., & Marinelli, F. (2009). Double variable neighbourhood search with smoothing for the molecular distance geometry problem. Journal of Global Optimization, 43(2–3), 207–218.

    Google Scholar 

  • Lin, S.-W., & Ying, K.-C. (2008). A hybrid approach for single-machine tardiness problems with sequence-dependent setup times. Journal of the Operational Research Society, 59(8), 1109–1119.

    Google Scholar 

  • Ling, A., Xu, C., & Tang, L. (2008). A modified VNS metaheuristic for max-bisection problems. Journal of Computational and Applied Mathematics, 220(1–2), 413–421.

    Google Scholar 

  • Liu, H., & Abraham, A. (2007). An hybrid fuzzy variable neighborhood particle swarm optimization algorithm for solving quadratic assignment problems. Journal of Universal Computer Science, 13(9), 1309–1331.

    Google Scholar 

  • Liu, S.-C., & Chung, C.-H. (2009). A heuristic method for the vehicle routing problem with backhauls and inventory. Journal of Intelligent Manufacturing, 20(1), 29–42.

    Google Scholar 

  • Liu, H. B., Abraham, A., Choi, O., & Moon, S. H. (2006). Variable neighborhood particle swarm optimization for multi-objective flexible job-shop scheduling problems. In Lecture notes in computer science (Vol. 4247, pp. 197–204). Berlin: Springer.

    Google Scholar 

  • Liu, S.-X., Liu, L., & Zhang, T. (2008). Variable neighborhood search for solving vehicle routing problems with backhauls and time windows. Journal of Northeastern University, 29(3), 316–319.

    Google Scholar 

  • Ljubic, I. (2007). A hybrid VNS for connected facility location. In Lecture notes in computer science (Vol. 4771, pp. 157–169). Berlin: Springer.

    Google Scholar 

  • Loudni, S., & Boizumault, P. (2008). Combining VNS with constraint programming for solving anytime optimization problems. European Journal of Operational Research, 191(3), 705–735.

    Google Scholar 

  • Loudni, S., Boizumault, P., & David, P. (2006). On-line resources allocation for ATM networks with rerouting. Computers and Operations Research, 33(10), 2891–2917.

    Google Scholar 

  • Lusa, A., & Potts, C. N. (2008). A variable neighbourhood search algorithm for the constrained task allocation problem. Journal of the Operational Research Society, 59, 812–822.

    Google Scholar 

  • Mansini, R., & Tocchella, B. (2009). The traveling purchaser problem with budget constraint. Computers and Operations Research, 36(7), 2263–2274.

    Google Scholar 

  • Martins, P., & de Souza, M. C. (2009). VNS and second order heuristics for the min-degree constrained minimum spanning tree problem. Computers and Operations Research, 36(11), 2969–2982.

    Google Scholar 

  • Melechovsky, J., Prins, C., & Calvo, R. (2005). A metaheuristic to solve a location-routing problem with non-linear costs. Journal of Heuristics, 11(5–6), 375–391.

    Google Scholar 

  • Melián, B. (2006). Using memory to improve the VNS metaheuristic for the design of SDH/WDM networks. In Lecture notes in computer science (Vol. 4030, pp. 82–93). Berlin: Springer.

    Google Scholar 

  • Melián, B., & Mladenović, N. (2007). Editorial. IMA Journal of Management Mathematics, 18(2), 99–100.

    Google Scholar 

  • Melián, B., Höller, H., & Voss, S. (2008). Designing WDM networks by a variable neighborhood search. Journal of Telecommunications and Information Technology, 4/2006, 15–20.

    Google Scholar 

  • Meric, L., Pesant, G., & Pierre, S. (2004). Variable neighborhood search for optical routing in networks using latin routers. Annales des Télécommunications/Annals of Telecommunications, 59(3–4), 261–286.

    Google Scholar 

  • Mitrovic-Minic, S., & Punnen, A. P. (2009). Local search intensified: very large-scale Variable Neighborhood Search for the multi-resource generalized assignment problem. Discrete Optimization. doi:10.1016/j.disopt.2009.04.004.

    Google Scholar 

  • Mladenović, N. (1995). A variable neighborhood algorithm—a new metaheuristic for combinatorial optimization. Abstracts of papers presented at Optimization days (p. 112). Montréal.

  • Mladenović, N. (2005). Formulation space search—a new approach to optimization (plenary talk). In J. Vuleta (Ed.), Proceedings of XXXII SYMOPIS’05 (pp. 3). Vrnjacka BanjA., Serbia.

  • Mladenović, N., & Hansen, P. (1997). Variable neighborhood search. Computers and Operations Research, 24, 1097–1100.

    Google Scholar 

  • Mladenović, N., & Urošević, D. (2003). Variable neighborhood search for the k-cardinality tree. Applied Optimization, 86, 481–500.

    Google Scholar 

  • Mladenović, N., Labbé, M., & Hansen, P. (2003a). Solving the p-center problem by tabu search and Variable Neighborhood Search. Networks, 42, 48–64.

    Google Scholar 

  • Mladenović, N., Petrović, J., Kovačević-Vujčić, V., & Čangalović, M. (2003b). Solving spread spectrum radar polyphase code design problem by tabu search and variable neighborhood search. European Journal of Operational Research, 151, 389–399.

    Google Scholar 

  • Mladenović, N., Plastria, F., & Urošević, D. (2005). Reformulation descent applied to circle packing problems. Computers and Operations Research, 32, 2419–2434.

    Google Scholar 

  • Mladenović, N., Brimberg, J., Hansen, P., & Moreno Pérez, J. A. (2007a). The p-median problem: a survey of metaheuristic approaches. European Journal of Operational Research, 179(3), 927–939.

    Google Scholar 

  • Mladenović, N., Plastria, F., & Uroševic, D. (2007b). Formulation space search for circle packing problems. In Lecture notes on computer science (Vol. 4638, pp. 212–216). Berlin: Springer.

    Google Scholar 

  • Mladenović, N., Dražić, M., Kovačevic-Vujčić, V., & Čangalović, M. (2008). General variable neighborhood search for the continuous optimization. European Journal of Operational Research, 191(3), 753–770.

    Google Scholar 

  • Mladenović, N., Urošević, D., Pérez-Brito, D., & García-González, C. G. (2009). Variable neighbourhood search for bandwidth reduction. European Journal of Operational Research. doi:10.1016/j.ejor.2008.12.015.

    Google Scholar 

  • Montemanni, R., & Smith, D. H. (2008). Construction of constant GC-content DNA codes via a Variable Neighbourhood Search algorithm. Journal of Mathematical Modelling and Algorithms, 7(3), 311–326.

    Google Scholar 

  • Moreno-Pérez, J. A., Moreno-Vega, J. M., & Rodríguez-Martín, I. (2003). Variable neighborhood tabu search and its application to the median cycle problem. European Journal of Operational Research, 151(2), 365–378.

    Google Scholar 

  • Moreno-Pérez, J. A., Hansen, P., & Mladenović, N. (2005). Parallel variable neighborhood search. In E. Alba (Ed.), Parallel metaheuristics: a new class of algorithms. New York: Wiley.

    Google Scholar 

  • Moreno-Vega, J. M., & Melián, B. (2008). Introduction to the special issue on variable neighborhood search. Journal of Heuristics, 14(5), 403–404.

    Google Scholar 

  • Mori, H., & Tsunokawa, S. (2005). Variable neighborhood tabu search for capacitor placement in distribution systems. IEEE International Symposium on Circuits and Systems, 5, 4747–4750.

    Google Scholar 

  • Naderi, B., Zandieh, M., & Fatemi Ghomi, S. M. T. (2008). A study on integrating sequence dependent setup time flexible flow lines and preventive maintenance scheduling. Journal of Intelligent Manufacturing. doi:10.1007/s10845-008-0157-6.

    Google Scholar 

  • Negreiros, M., & Palhano, A. (2006). The capacitated centred clustering problem. Computers and Operations Research, 33(6), 1639–1663.

    Google Scholar 

  • Nuortio, T., Kytöjoki, J., Niska, H., & Bräysy, O. (2006). Improved route planning and scheduling of waste collection and transport. Expert Systems with Applications, 30(2), 223–232.

    Google Scholar 

  • Ochi, L. S., Silva, M. B., & Drummond, L. (2001). Metaheuristics based on GRASP and VNS for solving traveling purchaser problem. In MIC’2001 (pp. 489–494). Porto.

  • Ognjanović, Z., Midić, S., & Mladenović, N. (2005). A hybrid genetic and variable neighborhood descent for probabilistic SAT problem. In Lecture notes in computer science (Vol. 3636, pp. 42–53). Berlin: Springer.

    Google Scholar 

  • Osman, I. H., & Ahmadi, S. (2007). Guided construction search metaheuristics for the capacitated p-median problem with single source constraint. Journal of the Operational Research Society, 58(1), 100–114.

    Google Scholar 

  • Pacheco, J., Casado, S., & Nuñez, L. (2007). Use of VNS and TS in classification: variable selection and determination of the linear discrimination function coefficients. IMA Journal of Management Mathematics, 18(2), 191–206.

    Google Scholar 

  • Pacheco, J. A., Casado, S., Alegre, J. F., & Álvarez, A. (2008). Heuristic solutions for locating health resources. IEEE Intelligent Systems, 23(1), 57–63.

    Google Scholar 

  • Pan, Q.-K., Wang, W.-H., & Zhu, J.-Y. (2007a). Some meta-heuristics for no-wait flow shop problem. Computer Integrated Manufacturing Systems, CIMS, 13(5), 967–970.

    Google Scholar 

  • Pan, Q.-K., Wang, W.-H., Zhu, J.-Y., & Zhao, B.-H. (2007b). Hybrid heuristics based on particle swarm optimization and variable neighborhood search for job shop scheduling. Computer Integrated Manufacturing Systems, CIMS, 13(2), 323–328.

    Google Scholar 

  • Papadimitriou, C. (1994). Computational complexity. Reading: Addison-Wesley.

    Google Scholar 

  • Paraskevopoulos, D. C., Repoussis, P. P., Tarantilis, C. D., Ioannou, G., & Prastacos, G. P. (2008). A reactive variable neighborhood tabu search for the heterogeneous fleet routing problem with time windows. Journal of Heuristics, 14(5), 425–455.

    Google Scholar 

  • Parreño, F., Alvarez-Valdes, R., Oliveira, J. F., & Tamarit, J. M. (2008). Neighborhood structures for the container loading problem: a VNS implementation. Journal of Heuristics. doi:10.1007/s10732-008-9081-3.

    Google Scholar 

  • Pelta, D., González, J. R., & Moreno-Vega, J. M. (2008). A simple and fast heuristic for protein structure comparison. BMC Bioinformatics, 9, 161.

    Google Scholar 

  • Pérez, M., Almeida Rodríguez, F., & Moreno-Vega, J. M. (2007). A hybrid VNS-path relinking for the p-hub median problem. IMA Journal of Management Mathematics, 18(2), 157–172.

    Google Scholar 

  • Plastria, F., Mladenović, N., & Urošević, D. (2005). Variable neighborhood formulation space search for circle packing. In 18th mini Euro conference VNS. Tenerife, Spain.

  • Plastria, F., De Bruyne, S., & Carrizosa, E. (2009). Alternating local search based VNS for linear classification. Annals of Operations Research. doi:10.1007/s10479-009-0538-z.

    Google Scholar 

  • Polacek, M., Hartl, R. F., Doerner, K., & Reimann, M. (2004). A variable neighborhood search for the multi depot vehicle routing problem with time windows. Journal of Heuristics, 10(6), 613–627.

    Google Scholar 

  • Polacek, M., Doerner, K. F., Hartl, R. F., Kiechle, G., & Reimann, M. (2007). Scheduling periodic customer visits for a traveling salesperson. European Journal of Operational Research, 179(3), 823–837.

    Google Scholar 

  • Polacek, M., Doerner, K. F., Hartl, R. F., & Maniezzo, V. (2008). A variable neighborhood search for the capacitated arc routing problem with intermediate facilities. Journal of Heuristics, 14(5), 405–423.

    Google Scholar 

  • Polo-Corpa, M. J., Salcedo-Sanz, S., Pérez-Bellido, A. M., López-Espí, P., Benavente, R., & Pérez, E. (2009). Curve fitting using heuristics and bio-inspired optimization algorithms for experimental data processing in chemistry. Chemometrics and Intelligent Laboratory Systems, 96(1), 34–42.

    Google Scholar 

  • Popper, K. (1959). The logic of scientific discovery. London: Hutchinson.

    Google Scholar 

  • Prandtstetter, M., & Raidl, G. R. (2008). An integer linear programming approach and a hybrid variable neighborhood search for the car sequencing problem. European Journal of Operational Research, 191(3), 1004–1022.

    Google Scholar 

  • Puchinger, J., & Raidl, G. R. (2008). Bringing order into the neighborhoods: relaxation guided variable neighborhood search. Journal of Heuristics, 14(5), 405–423.

    Google Scholar 

  • Puchinger, J., Raidl, G. R., & Pferschy, U. (2006). The core concept for the multidimensional knapsack problem. In Lecture notes in computer science (Vol. 3906, pp. 195–208). Berlin: Springer.

    Google Scholar 

  • Qian, B., Wang, L., Huang, D. X., & Wang, X. (2006). Multi-objective flow shop scheduling using differential evolution. In Lecture notes in control and information sciences (Vol. 345, pp. 1125–1136). Berlin: Springer.

    Google Scholar 

  • Rahimi-Vahed, A., Dangchi, M., Rafiei, H., & Salimi, E. (2009). A novel hybrid multi-objective shuffled frog-leaping algorithm for a bi-criteria permutation flow shop scheduling problem. International Journal of Advanced Manufacturing Technology, 41(11–12), 1227–1239.

    Google Scholar 

  • Reeves, C. R. (Ed.) (1993). Modern heuristic techniques for combinatorial problems. Oxford: Blackwell Scientific.

    Google Scholar 

  • Reinelt, G. (1991). TSLIB—A traveling salesman library. ORSA Journal on Computing, 3, 376–384.

    Google Scholar 

  • Remde, S., Cowling, P., Dahal, K., & Colledge, N. (2007). Exact/heuristic hybrids using rVNS and hyperheuristics for workforce scheduling. In Lecture notes in computer science (Vol. 4446, pp. 188–197). Berlin: Springer.

    Google Scholar 

  • Repoussis, P. P., Paraskevopoulos, D. C., Tarantilis, C. D., & Ioannou, G. (2006). A reactive greedy randomized variable neighborhood tabu search for the vehicle routing problem with time windows. In Lecture notes in computer science (Vol. 4030, pp. 134–138). Berlin: Springer.

    Google Scholar 

  • Repoussis, P. P., Tarantilis, C. D., & Ioannouo, G. (2007). A hybrid metaheuristic for a real life vehicle routing problem. In Lecture notes in computer science (Vol. 4310, pp. 247–254). Berlin: Springer.

    Google Scholar 

  • Ribeiro, C. C., & de Souza, M. C. (2002). Variable neighborhood search for the degree-constrained minimum spanning tree problem. Discrete Applied Mathematics, 118(1–2), 43–54.

    Google Scholar 

  • Ribeiro, C. C., & Vianna, D. S. (2005). A GRASP/VND heuristic for the phylogeny problem using a new neighborhood structure. International Transactions in Operational Research, 12(3), 325–338.

    Google Scholar 

  • Ribeiro, C. C., Uchoa, E., & Werneck, R. (2002). A hybrid GRASP with perturbations for the Steiner problem in graphs. INFORMS Journal on Computing, 14(3), 228–246.

    Google Scholar 

  • Ribeiro, C. C., Martins, S. L., & Rosseti, I. (2007). Metaheuristics for optimization problems in computer communications. Computer Communications, 30(4), 656–669.

    Google Scholar 

  • Ribeiro, C. C., Aloise, D., Noronha, T. F., Rocha, C., & Urrutia, S. (2008a). A hybrid heuristic for a multi-objective real-life car sequencing problem with painting and assembly line constraints. European Journal of Operational Research, 191(3), 981–992.

    Google Scholar 

  • Ribeiro, C. C., Aloise, D., Noronha, T. F., Rocha, C., & Urrutia, S. (2008b). An efficient implementation of a VNS/ILS heuristic for a real-life car sequencing problem. European Journal of Operational Research, 191(3), 596–611.

    Google Scholar 

  • Roshanaei, V., Naderi, B., Jolai, F., & Khalili, M. (2009). A variable neighborhood search for job shop scheduling with set-up times to minimize makespan. Future Generation Computer Systems, 25(6), 654–661.

    Google Scholar 

  • Rousseau, L. M., Gendreau, M., & Pesant, G. (2002). Using constraint-based operators to solve the vehicle routing problem with time windows. Journal of Heuristics, 8(1), 43–58.

    Google Scholar 

  • Santana, R., Larrañaga, P., & Lozano, J. A. (2008). Combining variable neighborhood search and estimation of distribution algorithms in the protein side chain placement problem. Journal of Heuristics, 14(5), 519–547.

    Google Scholar 

  • Schilde, M., Doerner, K. F., Hartl, R. F., & Kiechle, G. (2009). Metaheuristics for the bi-objective orienteering problem. Swarm Intelligence, 3(3), 179–201.

    Google Scholar 

  • Schmid, V., Doerner, K. F., Hartl, R. F., & Salazar-González, J. J. (2008). Hybridization of very large neighborhood search for ready-mixed concrete delivery problems. Computers and Operations Research. doi:10.1016/j.cor.2008.07.010.

    Google Scholar 

  • Sedlar, J., Vukičević, D., Aouchiche, M., & Hansen, P. (2007a). Variable neighborhood search for extremal graphs 24. Conjectures and results about the clique number. Les Cahiers du GERAD G-2007-33.

  • Sedlar, J., Vukičević, D., Aouchiche, M., & Hansen, P. (2007b). Variable neighborhood search for extremal graphs 25. Products of connectivity and distance measures. Les Cahiers du GERAD G-2007-47.

  • Sevkli, M., & Aydin, M. E. (2006a). A variable neighbourhood search algorithm for job shop scheduling problems. In Lecture notes in computer science (Vol. 3906, pp. 261–271). Berlin: Springer.

    Google Scholar 

  • Sevkli, M., & Aydin, M. E. (2006b). Variable Neighbourhood Search for job shop scheduling problems. Journal of Software, 1(2), 34–39.

    Google Scholar 

  • Sevkli, M., & Aydin, M. E. (2007). Parallel variable neighbourhood search algorithms for job shop scheduling problems. IMA Journal of Management Mathematics, 18(2), 117–134.

    Google Scholar 

  • Sevkli, Z., & Sevilgen, F. E. (2006). Variable neighborhood search for the orienteering problem. In Lecture notes in computer science (Vol. 4263, pp. 134–143). Berlin: Springer.

    Google Scholar 

  • Sevkli, Z., & Sevilgen, F. E. (2008). A hybrid particle swarm optimization algorithm for function optimization. In Lecture notes in computer science (Vol. 4974, pp. 585–595). Berlin: Springer.

    Google Scholar 

  • Stevanovic, D., Aouchiche, M., & Hansen, P. (2008). On the spectral radius of graphs with a given domination number. Linear Algebra and Its Applications, 428(8–9), 1854–1864.

    Google Scholar 

  • Subramanian, A., & Dos Anjos Formiga Cabral, L. (2008). An ILS based heuristic for the vehicle routing problem with simultaneous pickup and delivery and time limit. In Lecture notes in computer science (Vol. 4972, pp. 135–146). Berlin: Springer.

    Google Scholar 

  • Tagawa, K., Ohtani, T., Igaki, T., Seki, S., & Inoue, K. (2007). Robust optimum design of SAW filters by the penalty function method. Electrical Engineering in Japan, 158(3), 45–54.

    Google Scholar 

  • Tasgetiren, M. F., Sevkli, M., Liang, Y.-C., & Gencyilmaz, G. (2004). Particle swarm optimization algorithm for permutation flowshop sequencing problem. In Lecture notes in computer science (Vol. 3172, pp. 382–389). Berlin: Springer.

    Google Scholar 

  • Tasgetiren, M. F., Liang, Y.-C., Sevkli, M., & Gencyilmaz, G. (2007). A particle swarm optimization algorithm for makespan and total flowtime minimization in the permutation flowshop sequencing problem. European Journal of Operational Research, 177(3), 1930–1947.

    Google Scholar 

  • Tavakkoli-Moghaddam, R., Safaei, N., & Sassani, F. (2009). A memetic algorithm for the flexible flow line scheduling problem with processor blocking. Computers and Operations Research, 36(2), 402–414.

    Google Scholar 

  • Toksari, A. D., & Güner, E. (2007). Solving the unconstrained optimization problem by a variable neighborhood search. Journal of Mathematical Analysis and Applications, 328(2), 1178–1187.

    Google Scholar 

  • Tseng, C.-T., Liao, C.-J., & Huang, K.-L. (2009). Minimizing total tardiness on a single machine with controllable processing times. Computers and Operations Research, 36(6), 1852–1858.

    Google Scholar 

  • Urošević, D., Brimberg, J., & Mladenović, N. (2004). Variable neighborhood decomposition search for the edge weighted k-cardinality tree problem. Computers and Operations Research, 31(8), 1205–1213.

    Google Scholar 

  • Vogt, L., Poojari, C. A., & Beasley, J. E. (2007). A tabu search algorithm for the single vehicle routing allocation problem. Journal of the Operational Research Society, 58, 467–480.

    Google Scholar 

  • Wang, X., & Tang, L. (2009). A population-based variable neighborhood search for the single machine total weighted tardiness problem. Computers and Operations Research, 36(6), 2105–2110.

    Google Scholar 

  • Whitaker, R. (1983). A fast algorithm for the greedy interchange of large-scale clustering and median location problems. INFOR, 21, 95–108.

    Google Scholar 

  • Wollenweber, J. (2008). A multi-stage facility location problem with staircase costs and splitting of commodities: model, heuristic approach and application. OR Spectrum, 30(4), 655–673.

    Google Scholar 

  • Xhafa, F. (2007). A hybrid evolutionary heuristic for job scheduling on computational grids. Studies in Computational Intelligence, 75, 269–311.

    Google Scholar 

  • Yang, J., Zhang, J., Aydin, M. E., & Wu, J. Y. (2007). A novel programming model and optimisation algorithms for WCDMA networks. In IEEE vehicular technology conference (pp. 1182–1187).

  • Yepes, V., & Medina, J. (2006). Economic heuristic optimization for heterogeneous fleet VRPHESTW. Journal of Transportation engineering, 132(4), 303–311.

    Google Scholar 

  • Zhang, C., Lin, Z., & Lin, Z. (2005). Variable neighborhood search with permutation distance for QAP. In Lecture notes in computer science (Vol. 3684, pp. 81–88). Berlin: Springer.

    Google Scholar 

  • Zhao, Q. H., Chen, S., & Zang, C. Y. (2008). Model and algorithm for inventory/routing decision in a three-echelon logistics system. European Journal of Operational Research, 191(3), 627–635.

    Google Scholar 

  • Zobolas, G. I., Tarantilis, C. D., & Ioannou, G. (2009a). Minimizing makespan in permutation flow shop scheduling problems using a hybrid metaheuristic algorithm. Computers and Operations Research, 36(4), 1249–1267.

    Google Scholar 

  • Zobolas, G. I., Tarantilis, C. D., & Ioannou, G. (2009b). A hybrid evolutionary algorithm for the job shop scheduling problem. Journal of the Operational Research Society, 60(2), 221–235.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nenad Mladenović.

Additional information

This is an updated version of the paper that appeared in 4OR. A Quarterly Journal of Operations Research 6(4):319–360 (2008).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hansen, P., Mladenović, N. & Moreno Pérez, J.A. Variable neighbourhood search: methods and applications. Ann Oper Res 175, 367–407 (2010). https://doi.org/10.1007/s10479-009-0657-6

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10479-009-0657-6

Keywords

Navigation