Skip to main content
Log in

Ejection chain and filter-and-fan methods in combinatorial optimization

  • Published:
Annals of Operations Research Aims and scope Submit manuscript

Abstract

The design of effective neighborhood structures is fundamentally important for creating better local search and metaheuristic algorithms for combinatorial optimization. Significant efforts have been made to develop larger and more powerful neighborhoods that are able to explore the solution space more effectively while keeping computation complexity within acceptable levels. The most important advances in this domain derive from dynamic and adaptive neighborhood constructions originating in ejection chain methods and a special form of a candidate list design that constitutes the core of the filter-and-fan method. The objective of this paper is to lay out the general framework of the ejection chain and filter-and-fan methods and present applications to a number of important combinatorial optimization problems. The features of the methods that make them effective in these applications are highlighted to provide insights into solving challenging problems in other settings.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Aarts, E. H. L., Van Laarhoven, P. J. M., Lenstra, J. K., & Ulder, N. L. J. (1994). A computational study of local search algorithms for job shop scheduling. ORSA Journal on Computing, 6(2), 118–125.

    Google Scholar 

  • Adams, J., Balas, E., & Zawack, D. (1988). The shifting bottleneck procedure for job shop scheduling. Management Science, 34(3), 391–401.

    Article  Google Scholar 

  • Ahuja, R. K., Orlin, J. B., & Sharma, D. (2001). Multi-exchange neighborhood search structures for the capacitated minimum spanning tree problem. Mathematical Programming, 91, 71–97.

    Google Scholar 

  • Ahuja, R. K., Orlin, J. B., & Sharma, D. (2003). A composite very large-scale neighborhood structure for the capacitated minimum spanning tree problem. Operations Research Letters, 31, 185–194.

    Article  Google Scholar 

  • Ahuja, R., Jha, K., Orlin, J., & Sharma, D. (2007). Very large-scale neighborhood search for the quadratic assignment problem. INFORMS Journal on Computing, 19(4), 646–657.

    Article  Google Scholar 

  • Amberg, A., Domschke, W., & Voß, S. (1996). Capacitated minimum spanning trees: algorithms using intelligent search. Combinatorial Optimization: Theory and Practice, 1, 9–39.

    Google Scholar 

  • Applegate, D., Cook, W., & Rohe, A. (2003). Chained Lin-Kernighan for large traveling salesman problems. INFORMS Journal on Computing, 15, 82–92.

    Article  Google Scholar 

  • Balas, E., & Vazacopoulos, A. (1998). Guided local search with shifting bottleneck for job shop scheduling. Management Science, 44(2), 262–275.

    Article  Google Scholar 

  • Cao, B., & Glover, F. (1997). Tabu search and ejection chains: application to a node weighted version of the cardinality-constrained TSP. Management Science, 43(7), 908–921.

    Article  Google Scholar 

  • Cavique, L., Rego, C., & Themido, I. (1999). Subgraph ejection chains and tabu search for the crew scheduling problem. Journal of Operational Research Society, 50, 608–616.

    Google Scholar 

  • Cela, E. (1998). The quadratic assignment problem: theory and algorithms. Boston: Kluwer Academic.

    Google Scholar 

  • Chan, H. S., & Dill, K. A. (1993). The protein folding problem. Physics Today, 46(2), 24–32.

    Article  Google Scholar 

  • Christofides, N., Mingozzi, A., & Toth, P. (1979). The vehicle routing problem. In A. Mingozzi, P. Toth, & C. Sandi (Eds.), Combinatorial optimisation (pp. 315–338). Chichester: Wiley.

    Google Scholar 

  • Chrobak, M., Szymacha, T., & Krawczyk, A., (1990). A data structure useful for finding Hamiltonian cycles. Theoretical Computer Science, 71, 419–424.

    Article  Google Scholar 

  • Cirasella, J., Johnson, D. S., McGeoch, L. A., & Zhang, W. (2001). The asymmetric traveling salesman problem: algorithms, instance generators and tests. In Proceedings of the algorithm engineering and experimentation, third international workshop, ALENEX 2001 (pp. 32–59).

  • Cornuéjols, G., Nemhauser, G. H., & Wolsey, L. (1990). The uncapacitated facility location problem. In P. Mirchandani & R. Francis (Eds.), Discrete location theory (pp. 119–171). New York: Wiley.

    Google Scholar 

  • Dill, K. A. (1985). Theory for the folding and stability of globular proteins. Biochemistry, 24(6), 1501–1509.

    Article  Google Scholar 

  • Dorndorf, U., & Pesch, E. (1994). Fast clustering algorithms. ORSA Journal on Computing, 6, 141–153.

    Google Scholar 

  • Fisher, M. L. (1994). Optimal solution of vehicle routing problems using minimum k-trees. Operations Research, 42(4), 626–642.

    Article  Google Scholar 

  • Fredman, M. L., Johnson, D. S., McGeoch, L. A., & Ostheimer, G. (1995). Data structures for traveling salesman. Journal of Algorithms, 18, 432–479.

    Article  Google Scholar 

  • Funke, B., Grünert, T., & Irnich, S. (2005). A note on single alternating cycle neighborhoods for the TSP. Journal of Heuristics, 11, 135–146.

    Article  Google Scholar 

  • Gamboa, D., Rego, C., & Glover, F. (2005). Data structures and ejection chains for solving large-scale traveling salesman problems. European Journal of Operational Research, 160, 154–171.

    Article  Google Scholar 

  • Gamboa, D., Rego, C., & Glover, F. (2006a). Implementation analysis of efficient heuristic algorithms for the traveling salesman problem. Computers and Operations Research, 33, 1161–1179.

    Article  Google Scholar 

  • Gamboa, D., Osterman, C., Rego, C., & Glover, F. (2006b). An experimental evaluation of ejection chain algorithms for the traveling salesman problem. School of Business Administration, University of Mississippi, MS.

  • Gao, L. L., & Robinson, E. P. (1994). Uncapacitated facility location: general solution procedures and computational experience. European Journal of Operational Research, 76, 410–427.

    Article  Google Scholar 

  • Gavish, B. (1982). Topological design of centralized computer networks: formulations and algorithms. Networks, 12, 355–377.

    Article  Google Scholar 

  • Gavish, B. (1991). Topological design telecommunications networks—local access design methods. Annals of Operations Research, 33, 17–71.

    Article  Google Scholar 

  • Glover, F. (1991). Multilevel tabu search and embedded search neighborhoods for the traveling salesman problem. Leeds School of Business, University of Colorado, Boulder, CO.

  • Glover, F. (1992). New ejection chain and alternating path methods for traveling salesman problems. In Computer science and operations research (pp. 449–509).

  • Glover, F. (1996). Ejection chains, reference structures and alternating path methods for traveling salesman problems. Discrete Applied Mathematics, 65, 223–253.

    Article  Google Scholar 

  • Glover, F. (1998). A template for scatter search and path relinking. In J.-K. Hao, E. Lutton, E. Ronald, M. Schoenauer, & D. Snyers (Eds.), Lecture notes in computer science : Vol. 1363. Artificial evolution (pp. 3–51). Heidelberg: Springer.

    Chapter  Google Scholar 

  • Glover, F., & Laguna, M. (1997). Tabu search. Boston: Kluwer Academic.

    Book  Google Scholar 

  • Glover, F., & Rego, C. (2006). Ejection chain and filter-and-fan methods in combinatorial optimization. 4OR: A Quarterly Journal of Operations Research, 4(4), 263–296.

    Article  Google Scholar 

  • Gonçalves, J. F., Mendes, J. J. M., & Resende, M. G. C. (2005). A hybrid genetic algorithm for the job shop scheduling problem. European Journal of Operational Research, 167, 77–95.

    Article  Google Scholar 

  • Grabowski, J., & Wodecki, M. (2005). A very fast tabu search algorithm for job shop problem. In C. Rego & B. Alidaee (Eds.), Metaheuristic optimization via memory and evolution: tabu search and scatter search (pp. 191–211). Boston: Kluwer Academic.

    Google Scholar 

  • Greistorfer, P., & Rego, C. (2006). A simple filter-and-fan approach to the facility location problem. Computers and Operations Research, 33(9), 2590–2601.

    Article  Google Scholar 

  • Helsgaun, K. (2000). An effective implementation of the Lin-Kernighan traveling salesman heuristic. European Journal of Operational Research, 126, 106–130.

    Article  Google Scholar 

  • Johnson, D. S., & McGeoch, L. A. ((1997). The traveling salesman problem: a case study in local optimization. In E.H.L. Aarts & J.K. Lenstra (Eds.), Local search in combinatorial optimization (pp. 215–310). Wiley: New York.

    Google Scholar 

  • Johnson, D. S., McGeoch, L. A., Glover, F., & Rego, C. (2000). 8th DIMACS implementation challenge: the traveling salesman problem. http://www.research.att.com/~dsj/chtsp/.

  • Kanellakis, P. C., & Papadimitriou, C. H. (1980). Local search for the asymmetric traveling salesman problem. Operations Research, 28, 1086–1099.

    Article  Google Scholar 

  • Lengauer, T. (1993). Algorithmic research problems in molecular bioinformatics. In Proceedings of the second israel symposium on theory of computing systems, ISTCS 1993 (pp. 177–192), Natanya, Israel.

  • Lesh, N., Mitzenmacher, M., & Whitesides, S. (2003). A complete and effective move set for simple protein folding. In Proceedings of the 7th annual international conference on research in computational molecular biology (RECOMB). ACM Press, New York (pp. 188–195).

  • Lin, S., & Kernighan, B. (1973). An effective heuristic algorithm for the traveling salesman problem. Operations Research, 21, 498–516.

    Article  Google Scholar 

  • Mathew, F., & Rego, C. (2006). Recent advances in heuristic algorithms for the capacitated minimum spanning tree problem. In Proceedings of the 37th annual meeting of decision sciences institute (DSI) (pp. 31021–31026).

  • Nowichi, E., & Smutnicki, C. (1996). A fast taboo search algorithm for the job shop problem. Management Science, 42(6), 797–813.

    Article  Google Scholar 

  • Osterman, C., & Rego, C. (2003). The satellite list and new data structures for symmetric traveling salesman problems. School of Business Administration, University of Mississippi, MS.

  • Patterson, R., Pirkul, H., & Rolland, E. (1999). Memory adaptive reasoning for solving the capacitated minimum spanning tree problem. Journal of Heuristics, 5, 159–180.

    Article  Google Scholar 

  • Pinedo, M. L. (2006). Series in operations research and financial engineering. Planning and scheduling in manufacturing and services. Berlin: Springer.

    Google Scholar 

  • Rego, C. (1998a). Relaxed tours and path ejections for the traveling salesman problem. European Journal of Operational Research, 106, 522–538.

    Article  Google Scholar 

  • Rego, C. (1998b) A subpath ejection method for the vehicle routing problem. Management Science, 44(10), 1447–1459.

    Article  Google Scholar 

  • Rego, C. (2001). Node ejection chains for the vehicle routing problem: sequential and parallel algorithms. Parallel Computing, 27, 201–222.

    Article  Google Scholar 

  • Rego, C., & Duarte, R. (2009). A filter fan approach to the job shop scheduling problem. European Journal of Operational Research, 194(3), 650–662.

    Article  Google Scholar 

  • Rego, C., & Glover, F. (2002). Local search and metaheuristics for the traveling salesman problem. In G. Gutin & A. Punnen (Eds.), The traveling salesman problem and its variations (pp. 309–368). Boston: Kluwer Academic.

    Google Scholar 

  • Rego, C., & Mathew, F. (2009). A filter-and-fan algorithm for the capacitated minimum spanning tree. School of Business Administration, University of Mississippi, MS.

  • Rego, C., Glover, F., & Gamboa, D. (2006). A doubly-rooted stem-and-cycle ejection chain algorithm for asymmetric traveling salesman problems. School of Business Administration, University of Mississippi, MS.

  • Rego, C., Li, H., & Glover, F. (2009a, to appear). A filter-and-fan approach to the 2D lattice model of the protein folding problem. Annals of Operation Research.

  • Rego, C., James, T., & Glover, F. (2009b, to appear). An ejection chain algorithm for the quadratic assignment problem. Networks.

  • Richards, F. M. (1991). The protein folding problem. Scientific American, 264(1), 54–60.

    Article  Google Scholar 

  • Rochat, Y., & Taillard, E. (1995). Probabilistic intensification and diversification in local search for vehicle routing. Journal of Heuristics, 1, 147–167.

    Article  Google Scholar 

  • Sabuncuoglu, I., & Bayiz, M. (1999). Job shop scheduling with beam search. European Journal of Operational Research, 118, 390–412.

    Article  Google Scholar 

  • Sharaiha, Y. M., Gendreau, M., Laporte, G., & Osman, I. H. (1997). A tabu search algorithm for the capacitated shortest spanning tree problem. Networks, 29, 161–171.

    Article  Google Scholar 

  • Taillard, E. (1993). Parallel iterative search methods for vehicle routing problems. Networks, 23, 661–673.

    Article  Google Scholar 

  • Yagiura, M., Ibaraki, T., & Glover, F. (2004). An ejection chain approach for the generalized assignment problem. INFORMS Journal on Computing, 16(2), 133–151.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to César Rego.

Additional information

This is an updated version of the paper that appeared in 4OR, 4(4), 263–296 (2006).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rego, C., Glover, F. Ejection chain and filter-and-fan methods in combinatorial optimization. Ann Oper Res 175, 77–105 (2010). https://doi.org/10.1007/s10479-009-0656-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10479-009-0656-7

Keywords

Navigation