Skip to main content

Bidirectional best-fit heuristic for orthogonal rectangular strip packing

Abstract

In a non-guillotinable rectangular strip packing problem (RF-SPP), the best orthogonal placement of given rectangular pieces on a strip of stock sheet having fixed width and infinite height are searched. The aim is to minimize the height of the strip while including all the pieces in appropriate orientations. In this study, a novel bidirectional best-fit heuristic (BBF) is introduced for solving RF-SPPs. The proposed heuristic as a new feature considers the gaps in both horizontal and vertical directions during the placement process. The performance of BBF is compared to some previous approaches, including one of the best heuristics from the literature. BBF achieves better results than the existing heuristics and delivers a better or matching performance as compared to the most of the previously proposed meta-heuristics for solving RF-SPPs.

This is a preview of subscription content, access via your institution.

Abbreviations

BBF:

bidirectional best-fit heuristic

SPP:

rectangular strip packing problem

RF:

non-guillotinable, variable orientation subtype

RF-SPP:

non-guillotinable, variable orientation (orthogonal) SPP

GA:

genetic algorithm

SA:

simulated annealing

GRASP:

greedy randomized adaptive search procedure

BF:

best fit heuristic

BL:

bottom left heuristic

iBL:

improved bottom left heuristic

BLF:

bottom left fill heuristic

References

  • Alvarez-Valdes, R., Parreno, F., & Tamarit, J. M. (2008). Reactive GRASP for the strip-packing problem. Computers & Operations Research, 35(4), 1065–1083.

    Article  Google Scholar 

  • Baker, B. S., Coffman, E. G., & Rivest, R. L., Jr. (1980). Orthogonal packings in two dimensions. SIAM Journal on Computing, 9(4), 808–826.

    Article  Google Scholar 

  • Beasley, J. E. (1985a). An exact two-dimensional non-guillotine cutting tree search procedure. Operations Research, 33(1), 49–64.

    Article  Google Scholar 

  • Beasley, J. E. (1985b). Algorithms for unconstrained two-dimensional guillotine cutting. Journal of Operations Research Society, 36(4), 297–306.

    Google Scholar 

  • Beltrán, J. D., Calderón, J. E., Cabrera, R. J., Moreno-Pérez, J. A., & Moreno-Vega, J. M. (2004). GRASP-VNS hybrid for the strip packing problem. In Proceeding of the workshop on hybrid metaheuristics (pp. 79–90).

  • Bortfeld, A. (2006). A genetic algorithm for the two-dimensional strip packing problem with rectangular pieces. European Journal of Operational Research, 172(3), 814–837.

    Article  Google Scholar 

  • Burke, E., Hart, E., Kendall, G., Newall, J., Ross, P., & Schulenburg, S. (2003). Hyper-heuristics: An emerging direction in modem search technology. In Handbook of metaheuristics (pp. 457–474). Dordrecht: Kluwer Academic.

    Google Scholar 

  • Burke, E. K., Kendall, G., & Whitwell, G. (2004). A new placement heuristic for the orthogonal stock-cutting problem. Operations Research, 52(4), 655–671.

    Article  Google Scholar 

  • Burke, E. K., Kendall, G., & Whitwell, G. (2006). Metaheuristic enhancements of the best-fit heuristic for the orthogonal stock cutting problem (Technical Report No NOTTCS-TR-2006-3). University of Nottingham, Computer Science.

  • Burke, E. K., Kendall, G., & Whitwell, G. (2009). A simulated annealing enhancements of the best-fit heuristic for the orthogonal stock cutting problem. INFORMS Journal on Computing, 21(3), 505–516.

    Article  Google Scholar 

  • Chazelle, B. (1983). The bottom-left bin-packing heuristic: An efficient implementation. IEEE Transactions on Computers, C-32(8), 697–707.

    Article  Google Scholar 

  • Dagli, C. H., & Poshyanonda, P. (1997). New approaches to nesting rectangular patterns. Journal of Intelligent Manufacturing, 8(3), 177–190.

    Article  Google Scholar 

  • Dowsland, K. A., & Dowsland, W. B. (1992). Packing problems. European Journal of Operational Research, 56(1), 2–14.

    Article  Google Scholar 

  • Dyckhoff, H. (1990). A typology of cutting and packing problems. European Journal of Operational Research, 44(2), 145–159.

    Article  Google Scholar 

  • Garey, M. R., & Johnson, D. S. (1979). Computers and intractability. New York: Freeman.

    Google Scholar 

  • Garrido, P., & Riff, M.-C. (2007). An evolutionary hyperheuristic to solve strip-packing problems. In Proceedings of the intelligent data engineering and automated learning—IDEAL 2007 (pp. 406–415)

  • Hässler, R. W., & Sweeney, P. E. (1991). Cutting stock problems and solution procedures. European Journal of Operational Research, 54(2), 141–150.

    Article  Google Scholar 

  • Hinxman, A. I. (1980). The trim loss and assortment problems: A survey. European Journal of Operational Research, 5(1), 8–18.

    Article  Google Scholar 

  • Hopper, E. (2000). Two-dimensional packing utilising evolutionary algorithms and other meta-heuristic methods. PhD thesis, Cardiff University, School of Engineering.

  • Hopper, E., & Turton, B. C. H. (2001a). An empirical investigation of metaheuristic and heuristic algorithms for a 2D packing problem. European Journal of Operational Research, 128, 34–57.

    Article  Google Scholar 

  • Hopper, E., & Turton, B. C. H. (2001b). A review of the application of meta-heuristic algorithms to 2D strip packing problems. Artificial Intelligence Review, 16(4), 257–300.

    Article  Google Scholar 

  • Imahori, S., & Yagiura, M. (2010). The best-fit heuristic for the rectangular strip packing problem: An efficient implementation and the worst-case approximation ratio. Computers & Operations Research, 37, 325–333.

    Article  Google Scholar 

  • Imahori, S., Yagiura, M., & Ibaraki, T. (2005). Improved local search algorithms for the rectangle packing problem with general spatial costs. European Journal of Operational Research, 167, 48–67.

    Article  Google Scholar 

  • Jakobs, S. (1996). On genetic algorithms for the packing of polygons. European Journal of Operational Research, 88, 165–181.

    Article  Google Scholar 

  • Kenmochi, M., Imamichi, T., Nonobe, K., Yagiura, M., & Nagamochi, H. (2009). Exact algorithms for the 2-dimensional strip packing problem with and without rotations. European Journal of Operational Research, 198, 73–83.

    Article  Google Scholar 

  • Lesh, N., Marks, J., McMahon, A., & Mitzenmacher, M. (2004). Exhaustive approaches to 2D rectangular perfect packings. Information Processing Letters, 90, 7–14.

    Article  Google Scholar 

  • Lesh, N., Marks, J., McMahon, A., & Mitzenmacher, M. (2005). New heuristic and interactive approaches to 2D rectangular strip packing. ACM Journal of Experimental Algorithmics, 10, 1–18.

    Google Scholar 

  • Liu, D., & Teng, H. (1999). An improved bottom left algorithm for genetic algorithm of the orthogonal packing of rectangle. European Journal of Operational Research, 112, 413–419.

    Article  Google Scholar 

  • Lodi, A., Martello, S., & Vigo, D. (1999). Heuristic and metaheuristic approaches for a class of two-dimensional bin packing problems. INFORMS Journal on Computing, 11, 345–357.

    Article  Google Scholar 

  • Lodi, A., Martello, S., & Monaci, M. (2002). Two-dimensional packing problems: A survey. European Journal of Operational Research, 141(2), 241–252.

    Article  Google Scholar 

  • Martello, S., & Vigo, D. (1998). Exact solution of the two-dimensional finite bin packing problem. Management Science, 44, 388–399.

    Article  Google Scholar 

  • Martello, S., Monaci, M., & Vigo, D. (2003). An exact approach to the strip-packing problem. INFORMS Journal on Computing, 15(3), 310–319.

    Article  Google Scholar 

  • Özcan, E., Bilgin, B., & Korkmaz, E. E. (2008). A comprehensive analysis of hyper-heuristics. Intelligent Data Analysis, 12(1), 3–23.

    Google Scholar 

  • Pinto, E., & Oliveira, J. F. (2005). Algorithm based on graphs for the non-guillotinable two-dimensional packing problem. In 2nd ESICUP meeting, Southampton.

  • Ramesh Babu, A., & Ramesh Babu, N. (1999). Effective nesting of rectangular parts in multiple rectangular sheets using genetic and heuristic algorithms. International Journal of Production Research, 37(7), 1625–1643.

    Article  Google Scholar 

  • Sarin, S. C. (1983). Two-dimensional stock cutting problems and solution methodologies. ASME Transactions Journal of Engineering for Industry, 104, 155–160.

    Article  Google Scholar 

  • Terashima-Marin, H., Flores-Alvarez, E. J., & Ross, P. (2005a). Hyper-heuristics and classifier systems for solving 2D-regular cutting stock problems. In Proceedings of the genetic and evolutionary computation conference (vol. 2, pp. 637–643).

  • Terashima-Marin, H., Moran-Saavedra, A., & Ross, P. (2005b). Forming hyper-heuristics with GAs when solving 2D-regular cutting stock problems. In Proceedings of the IEEE congress on evolutionary computation (vol. 2, pp. 1104–1110).

  • Valenzuela, C. L., & Wang, P. Y. (2001). Heuristics for large strip packing problems with guillotine patterns: An empirical study. In Proceedings of the 4th metaheuristics international conference (pp. 417–421). University of Porto, Porto, Portugal.

  • Waescher, G., Haussner, H., & Schumann, H. (2007). An improved typology of cutting and packing problems. European Journal of Operational Research, 183, 1109–1130.

    Article  Google Scholar 

  • Zhang, D., Kang, Y., & Deng, A. (2006). A new heuristic recursive algorithm for the strip rectangular packing problem. Computers & Operations Research, 33, 2209–2217.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ender Özcan.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Aşık, Ö.B., Özcan, E. Bidirectional best-fit heuristic for orthogonal rectangular strip packing. Ann Oper Res 172, 405 (2009). https://doi.org/10.1007/s10479-009-0642-0

Download citation

  • Published:

  • DOI: https://doi.org/10.1007/s10479-009-0642-0

Keywords

  • Heuristic
  • Sequencing
  • Cutting
  • Packing