Skip to main content

Formulating diets for growing pigs: economic and environmental considerations

Abstract

We look at the environmental impact of formulating diets for an animal production system, namely the case of growing pigs. The classic approach in animal production is to use a growth model based on the least-cost diet formulation. This optimal diet is generally established by linear programming. Such an approach can lead to adverse environmental effects in the form of nitrogen and phosphorus excretions. Multi-criteria (two and three criteria) models are proposed with the aim of addressing both economic and environmental considerations. We apply the models to two real-life contexts: Québec (Canada) and France, and make some comparisons. We show that important reductions in nitrogen and phosphorus excretions can be achieved at relatively low costs in both contexts.

This is a preview of subscription content, access via your institution.

References

  • Castrodeza, C., Lara, P., & Peña, T. (2005). Multicriteria fractional model for feed formulation: economic, nutritional and environmental criteria. Agricultural Systems, 86, 76–96.

    Article  Google Scholar 

  • Centner, T. J., & Newton, G. L. (2008). Meeting environmental requirements for land application of animal manure. Journal of Animal Science, 86, 3228–3234.

    Article  Google Scholar 

  • Chapoutot, P., & Pressenda, F. (2005). Conséquences des nouveaux “systèmes d’unités phosphore” sur la formulation des régimes. Productions Animales, 18, 209–228.

    Google Scholar 

  • Cluis, D., & Couture, P. (1999). Problématiques environnementales des rejets d’élevages porcins intensifs. Sciences et Techniques de l’Eau, 20, 311–317.

    Google Scholar 

  • Dantzig, G. B. (1963). Linear programming and extensions. Princeton: Princeton Press.

    Google Scholar 

  • Dantzig, G. B. (1990). The diet problem. Interfaces, 20, 43–47.

    Article  Google Scholar 

  • Dubeau, F., Julien, P.-O., & Pomar, C. (2008). Étude de cas: un porcin dans un environnement sain. INFOR, 46, 199–217.

    Google Scholar 

  • Ekpe, E. D., Zijlstra, R. T., & Patience, J. F. (2002). Digestible phosphorus requirement of grower pigs. Canadian Journal of Animal Science, 82, 541–549.

    Article  Google Scholar 

  • Fent, R. W., Allee, G. L., Webel, D. M., Spencer, J. D., Gaines, A. M., Kendall, D. C., & Frank, J. W. (2003). Available phosphorus requirement to maximize growth and bone mineralization in 24 to 50 kg pigs. Journal of Animal Science, 81 (Suppl. 1) et 98 (Abstract).

  • Fernandez, J. A., Poulsen, H. D., Boisen, S., & Rom, H. B. (1999). Nitrogen and phosphorus consumption, utilisation and losses in pig production: Denmark. Livestock Production Science, 58, 225–242.

    Article  Google Scholar 

  • Garille, S. G., & Gass, S. I. (2001). Stigler’s diet problem revisited. Operations Research, 49, 1–13.

    Article  Google Scholar 

  • INRA-AFZ (2002). Tables de composition et de valeur nutritive des matières premières destinées aux animaux d’élevage, D. Sauvant, J.M. Perez & G. Tran, Coord., INRA Eds, Paris.

  • Jean dit Bailleul, P., Rivest, J., Dubeau, F., & Pomar, C. (2001). Reducing nitrogen excretion in pigs by modifying the traditional least-cost formulation algorithm. Livestock Production Science, 72, 199–211.

    Article  Google Scholar 

  • Jongbloed, A. W., & Lenis, N. P. (1992). Alteration on nutrition as a means to reduce environmental pollution by pigs. Livestock Production Science, 31, 75–94.

    Article  Google Scholar 

  • Knowlton, K. F., Radcliffe, J. S., Novak, C. L., & Emmerson, D. A. (2004). Animal management to reduce phosphorus losses to the environment. Journal of Animal Science, 82, 173–195.

    Google Scholar 

  • Kornegay, E. T. (2001). Digestion of phosphorus and other nutrients: the role of phytase and factors influencing their activity. In M. R. Bedford & G. G. Partridge (Eds.), Enzymes in farm animal nutrition (pp. 237–271). Wallingford: CAB International.

    Google Scholar 

  • Lancaster, L. M. (1992a). The evolution of the diet model in managing food systems. Interfaces, 22, 59–68.

    Article  Google Scholar 

  • Lancaster, L. M. (1992b). The history of the application of mathematical programming to menu planning. European Journal of Operational Research, 57, 339–347.

    Article  Google Scholar 

  • Le Bellego, L., & Noblet, J. (2002). Performance and utilization of dietary energy and amino acids in piglets fed low protein diets. Livestock Production Science, 76, 45–58.

    Article  Google Scholar 

  • Lotov, A. V., Bushenkov, V. A., & Kamenev, G. K. (2004). Interactive decision maps, approximation and visualisation of Pareto frontier. Dordrecht: Kluwer Academic.

    Google Scholar 

  • Microsoft Corporation (2003). Excel©, Redmond, WA, USA.

  • Noblet, J., Fortune, H., Shi, X. S., & Dubois, S. (1994). Prediction of net energy value of feeds for growing pigs. Journal of Animal Science, 72, 344–354.

    Google Scholar 

  • NRC (1998). Nutrient requirements of swine (10th ed.). Washington: National Academy Press.

    Google Scholar 

  • Oenema, O. (2004). Governmental policies and measures regulating nitrogen and phosphorus from animal manure in European agriculture. Journal of Animal Science, 82, E196–E206 (E. Suppl.).

    Google Scholar 

  • Pomar, C., Dubeau, F., Létourneau Montminy, M.-P., Boucher, C., & Julien, P.-O. (2007). Reducing phosphorous concentration in pigs diets by adding an environmental objective to the traditional feed formulation algorithm. Livestock Science, 111, 16–27.

    Article  Google Scholar 

  • Patience, J. F., Thacker, P. A., & de Lange, C. F. M. (1995). Swine nutrition guide (2nd ed.). Saskatoon: University of Saskatchewan, Prairie Swine Center.

    Google Scholar 

  • Poulsen, H. D., Jongbloed, A. W., Latimer, P., & Fernandez, J. A. (1999). Phosphorus consumption, utilisation and losses in pig production in France, The Netherlands and Denmark. Livestock Production Science, 58, 251–259.

    Article  Google Scholar 

  • Rehman, T., & Romero, C. (1987). Goal programming with penalty functions and livestock ration formulation, 23, 117–132.

  • Rotz, C. A. (2004). Management to reduce nitrogen losses in animal production. Journal of Animal Science, 82, E119–E137.

    Google Scholar 

  • Steuer, R. E. (1986). Multiple criteria optimization. New York: Wiley.

    Google Scholar 

  • Steuer, R. E. (2003). ADBASE: A multiple objective linear programming solver for all efficient extreme points and all efficient inbounded edges. Athens: Terry College of Business, University of Georgia.

    Google Scholar 

  • Stigler, G. J. (1945). The cost of subsistence. Journal of Farm Economics, 27, 303–314.

    Article  Google Scholar 

  • Thompson, E., & Nolan, J. (2001). UNEForm: a powerfull feed formulation spreadsheet suitable for teaching or on-farm formulation. Animal Feed Science and Technology, 91, 233–240.

    Article  Google Scholar 

  • Tozer, P. R., & Stokes, J. R. (2001). A multi-objective programming approach to feed ration balancing and nutrient management. Agricultural Systems, 67, 201–215.

    Article  Google Scholar 

  • Van der Peet-Schwering, C. M. C., Aarnink, A. J. A., Rom, H. B., & Dourmad, J. Y. (1999). Ammonia emissions from pig houses in the Netherlands, Denmark and France. Livestock Production Science, 58, 265–269.

    Article  Google Scholar 

  • Wilton, J. W., Morris, C. A., Jenson, E. A., Leigh, A. O., & Pfeiffer, W. C. (1974). A linear programming model for beef cattle production. Canadian Journal of Animal Science, 54, 693–707.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to François Dubeau.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Dubeau, F., Julien, PO. & Pomar, C. Formulating diets for growing pigs: economic and environmental considerations. Ann Oper Res 190, 239–269 (2011). https://doi.org/10.1007/s10479-009-0633-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10479-009-0633-1

Keywords

  • Diet
  • Multi-criteria model
  • Cost
  • Environment
  • Pollution