Skip to main content
Log in

The three-factor model and artificial neural networks: predicting stock price movement in China

Annals of Operations Research Aims and scope Submit manuscript

Abstract

Since the establishment of the Shanghai Stock Exchange (SHSE) in 1990 and the Shenzhen Stock Exchange (SZSE) in 1991, China’s stock markets have expanded rapidly. Although this rapid growth has attracted considerable academic interest, few studies have examined the ability of conventional financial models to predict the share price movements of Chinese stock. This gap in the literature is significant, given the volatility of the Chinese stock markets and the added risk that arises from the Chinese legal and regulatory environment. In this paper we address this research gap by examining the predictive ability of several well-established forecasting models, including dynamic versions of a single-factor CAPM-based model and Fama and French’s three-factor model. In addition, we compare the forecasting ability of each of these models with that of an artificial neural network (ANN) model that contains the same predictor variables but relaxes the assumption of model linearity. Surprisingly, we find no statistical differences in the forecasting accuracy of the CAPM and three-factor model, a result that may reflect the emerging nature of the Chinese stock markets. We also find that each ANN model outperforms the corresponding linear model, indicating that neural networks may be a useful tool for stock price prediction in emerging markets.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

References

  • Barry, C. C., Goldreyer, E., Lockwood, L., & Rodriguez, M. (2002). Robustness of size and value effects in emerging equity markets, 1985–2000. Emerging Markets Review, 3(1), 1–30.

    Article  Google Scholar 

  • Bergerson, K., & Wunsch, D. C. (1991). A commodity trading model based on a neural network-expert system hybrid. Proceedings of the International Joint Conference on Neural Networks, 91, 289–293.

    Google Scholar 

  • Bhattacharyya, S., & Pendharkar, P. C. (1998). Inductive, evolutionary, and neural computing techniques for discrimination: a comparative study. Decision Sciences, 29(4), 871–893.

    Article  Google Scholar 

  • Bhattacharya, U., Daouk, H., Jorgenson, B., & Kehr, C.-H. (2000). When an event is not an event: the curious case of an emerging market. Journal of Financial Economics, 55(1), 69–101.

    Article  Google Scholar 

  • Brown, L. D., & Rozeff, M. S. (1979). Univariate time-series models of quarterly accounting earnings per share: a proposed model. Journal of Accounting Research, 17, 179–189.

    Article  Google Scholar 

  • Brennan, M. J., Chordia, T., & Subrahmanyam, A. (1998). Alternative factor specifications, security characteristics, and the cross-section of expected returns. Journal of Financial Economics, 49(3), 345–374.

    Article  Google Scholar 

  • Bruce, C., & Michael, J. P. (1998). Neural networks and business forecasting: an application to cross-sectional audit fee data. International Journal of Commerce and Management, 8(2), 94–120.

    Article  Google Scholar 

  • Callen, J. L., Kwan, C. C. Y., Yip, P. C. Y., & Yuan, Y. (1996). Neural network forecasting of quarterly accounting earnings. International Journal of Forecasting, 12(4), 475–482.

    Article  Google Scholar 

  • Chen, J., & Strange, R. (2005). The determinants of capital structure: evidence from Chinese listed companies. Economics of Planning, 38(1), 11–35.

    Google Scholar 

  • Chen, C. J. P., Gul, F. A., & Su, X. (1999). A comparison of reported earnings under Chinese GAAP vs. AS: evidence from the Shanghai stock exchange. Accounting Horizons, 13(2), 91–111.

    Article  Google Scholar 

  • Chen, J., Kan, L. K., & Anderson, H. (2007). Size, book/market ratio and risk factor returns: evidence from China A-share market. Managerial Finance, 33(8), 574–594.

    Article  Google Scholar 

  • Church, K. B., & Curram, S. P. (1996). Forecasting consumers’ expenditure: a comparison between econometric and neural network models. International Journal of Forecasting, 12(2), 255–267.

    Article  Google Scholar 

  • Conover, W. J. (1980). Practical nonparametric statistics (2nd ed.). New York: Wiley.

    Google Scholar 

  • Corradi, V., & Swanson, N. R. (2002). A consistent test for nonlinear out of sample predictive accuracy. Journal of Econometrics, 110, 353–381.

    Article  Google Scholar 

  • Curry, B., & Peel, M. J. (1998). Neural networks and business forecasting: an application to cross-sectional audit fee data. International Journal of Commerce and Management, 8, 94–120.

    Article  Google Scholar 

  • Deng, X., & Wang, X. (2006). Ownership structure and financial distress: evidence from public-listed companies in China. International Journal of Management, 23(3, Part I), 486–502.

    Google Scholar 

  • Desai, V. S., & Bharati, R. (1998). The efficacy of neural networks in predicting returns on stock and bond indices. Decision Sciences, 29(2), 405–421.

    Article  Google Scholar 

  • Diebold, F. X., & Mariano, R. S. (1995). Comparing predictive accuracy. Journal of Business and Economic Statistics, 13, 253–263.

    Article  Google Scholar 

  • Drew, M. E., & Veeraraghavan, M. (2001). Explaining the cross-section of stock returns in the Asian region. International Quarterly Journal of Finance, 1, 205–221.

    Google Scholar 

  • Drew, M. E., Naughton, T., & Veeraraghavan, M. (2003). Firm size, book-to-market equity and security returns: evidence from the Shanghai stock exchange. Australian Journal of Management, 28(2), 119–139.

    Article  Google Scholar 

  • Etheridge, H. L., Sriram, R. S., & Hsu, H. Y. K. (2000). A comparison of selected artificial neural networks that help auditors evaluate client financial viability. Decision Sciences, 31(2), 531–549.

    Article  Google Scholar 

  • Fadlalla, A., & Lin, C. H. (2001). An analysis of the applications of neural networks in finance. Interfaces, 31(4), 112–122.

    Google Scholar 

  • Fama, E. F., & French, K. R. (1992). The cross-section of expected stock returns. The Journal of Finance, 47(2), 427–465.

    Article  Google Scholar 

  • Fama, E. F., & French, K. R. (1993). Common risk factors in the returns on stocks and bonds. The Journal of Finance, 33, 3–56.

    Google Scholar 

  • Fama, E. F., & French, K. R. (1998). Value versus growth: the international evidence. The Journal of Finance, 53(6), 1975–1999.

    Article  Google Scholar 

  • Ferson, W. E., & Harvey, C. R. (1999). Conditioning variables and the cross section of stock returns. Journal of Finance, 54(4), 1325–1360.

    Article  Google Scholar 

  • Foster, G. (1977). Quarterly accounting data: time series properties and predictive ability results. The Accounting Review, 52(1), 1–21.

    Google Scholar 

  • Griffin, P. (1977). The time series behavior of quarterly earnings: preliminary evidence. Journal of Accounting Research, 15, 71–83.

    Article  Google Scholar 

  • Harvey, C. R. (1995). Predictable risk and returns in emerging markets. The Review of Financial Studies, 8(3), 773–816.

    Article  Google Scholar 

  • Hawley, D. D., Johnson, J. D., & Raina, D. (1990). Artificial neural systems: a new tool for financial decision-making. Financial Analysts Journal, 46(6), 63–72.

    Article  Google Scholar 

  • Haykin, S. (1998). Neural networks: a comprehensive foundation (2nd ed.). Prentice-Hall: Englewood Cliffs.

    Google Scholar 

  • Hu, M. Y., Zhang, G., Jiang, C. X., & Patuwo, B. E. (1999). A cross-validation analysis of neural network out-of-sample performance in exchange rate forecasting. Decision Science, 30(1), 197–212.

    Article  Google Scholar 

  • Hutchinson, J. M., Lo, A. W., & Poggio, T. (1994). A nonparametric approach to pricing and hedging derivative securities via learning networks. The Journal of Finance, 49(3), 851–889.

    Article  Google Scholar 

  • Jiang, J. J., Zhong, M., & Klein, G. (2000). Marketing category forecasting: an alternative of BVAR-artificial neural networks. Decision Sciences, 31(4), 789–807.

    Article  Google Scholar 

  • Kang, J., Liu, M.-h., & Ni, S. X. (2002). Contrarian and momentum strategies in the China stock market: 1993–2000. Pacific-Basin Finance Journal, 10(3), 243–265.

    Article  Google Scholar 

  • Kaparthi, S., & Suresh, N. C. (1994). Performance of selecting part-machine grouping technique for data sets of wide ranging sizes and imperfection. Decision Sciences, 25(4), 515–532.

    Article  Google Scholar 

  • Kryzanowski, L., Galler, M., & Wright, D. W. (1993). Using artificial neural networks to pick stocks. Financial Analysts Journal, 49(4), 21–27.

    Article  Google Scholar 

  • Lenard, M. J., Alam, P., & Madey, G. R. (1995). The application of neural networks and a qualitative response model to the auditor’s going concern uncertainty decision. Decision Sciences, 26(2), 209–224.

    Article  Google Scholar 

  • Liang, L., & Wu, D. (2005). An application of pattern recognition on scoring Chinese corporations financial conditions based on backpropagation neural network. Computers & Operations Research, 32, 1115–1129.

    Google Scholar 

  • Lin, C. (2001). Corporatisation and corporate governance in China’s economic transition. Economics of Planning, 34(1–2), 5–35.

    Article  Google Scholar 

  • Lintner, J. (1965). The valuation of risk assets and the selection of risky investments in stock portfolios and capital budgets. Review of Economics and Statistics, 47, 13–37.

    Article  Google Scholar 

  • Liu, X., Song, H., & Romily, R. (1997). Are Chinese stock markets efficient: co-integration and causality analysis. Applied Economic Letters, 4(8), 511–515.

    Article  Google Scholar 

  • McGrath, C. (2002). Terminator portfolio. Kiplinger’s Personal Finance, 56(7), 56–57.

    Google Scholar 

  • McGuinness, P. B., & Ferguson, M. J. (2005). The ownership structure of listed Chinese state-owned enterprises and its relation to corporate performance. Applied Financial Economics, 15(4), 231–246.

    Article  Google Scholar 

  • Mookerjee, R., & Yu, O. (1999). Seasonality in returns on the Chinese stock markets: the case of Shanghai and Shenzhen. Global Finance Journal, 10(1), 93–105.

    Article  Google Scholar 

  • Ng, L., & Wu, F. (2007). The trading behavior of institutions and individuals in Chinese equity markets. Journal of Banking and Finance, 31(9), 2695–2710.

    Article  Google Scholar 

  • Papatla, P., Zahedi, M. F., & Zekic-Susac, M. (2002). Leveraging the strengths of choice models and neural networks: a multiproduct comparative analysis. Decision Sciences, 33(3), 433–468.

    Article  Google Scholar 

  • Qi, M. (1999). Nonlinear predictability of stock returns using financial and economic variables. Journal of Business and Economic Statistics, 17(4), 419–429.

    Article  Google Scholar 

  • Qi, M. (2001). Predicting US recessions with leading indicators via neural network model. International Journal of Forecasting, 17(3), 383–401.

    Article  Google Scholar 

  • Sharda, R., & Patil, R. B. (1992). A connectionist approach to time series prediction: an empirical test. Journal of Intelligent Manufacturing, 3, 317–323.

    Article  Google Scholar 

  • Sharpe, W. F. (1964). Capital asset prices: a theory of market equilibrium under conditions of risk. Journal of Finance, 19, 425–442.

    Article  Google Scholar 

  • Shen, C. H. (1996). Forecasting macroeconomic variables using data of different periodicities. International Journal of Forecasting, 12(2), 269–282.

    Article  Google Scholar 

  • Su, D. (2003). Stock price reactions to earnings announcements: evidence from Chinese markets. Review of Financial Economics, 12(3), 271–286.

    Article  Google Scholar 

  • Su, D., & Fleisher, B. M. (1998). Risk, return and regulation in Chinese stock markets. Journal of Economics and Business, 50(3), 239–256.

    Article  Google Scholar 

  • Thieme, R. J., Song, M., & Calanton, R. J. (2000). Artificial neural network decision support systems for new product development project selection. Journal of Marketing Research, 37(2), 499–506.

    Article  Google Scholar 

  • Tkacz, G. (2001). Neural network forecasting of Canadian GDP growth. International Journal of Forecasting, 17(1), 57–69.

    Article  Google Scholar 

  • Wang, Y., & Di Iorio, A. (2007). The cross section of expected stock returns in the Chinese A-share market. Global Finance Journal, 17(3), 335–349.

    Article  Google Scholar 

  • Wang, X. L., Shi, K., & Fan, X. F. (2006). Psychological mechanisms of investors in Chinese stock markets. Journal of Economic Psychology, 27(6), 762–780.

    Article  Google Scholar 

  • Watts, R. L., & Leftwich, R. W. (1977). The time series of annual accounting EPS (in research reports). Journal of Accounting Research, 15(2), 253–271.

    Article  Google Scholar 

  • Wei, Z., & Varela, O. (2003). State equity ownership and firm market performance: evidence from China’s newly privatized firms. Global Finance Journal, 14(1), 65–82.

    Article  Google Scholar 

  • White, H. (1989). Neural network learning and statistics. AI Expert, December.

  • Wong, A. W., Tan, R. S. K., & Liu, W. (2006). The cross-section of stock returns on the Shanghai stock exchange. Review of Quantitative Finance and Accounting, 26(1), 23–39.

    Article  Google Scholar 

  • Wu, D., Liang, L., & Yang, Z. (2008). Analyzing the financial distress of Chinese public companies using probabilistic neural networks and multivariate discriminate analysis. Socio-Economic Planning Sciences, 42, 206–220.

    Article  Google Scholar 

  • Young, M. N. & McGuiness, P. B. (2001). The missing link: why stock markets have been ineffective in Chinese SOE reform. Business Horizons, 44(4), 55–62.

    Article  Google Scholar 

  • Zhang, Y., & Zhao, R. (2004). The valuation differential between class A and B shares: country risk in the Chinese stock market. Journal of International Financial Management and Accounting, 15(1), 44–59.

    Article  Google Scholar 

  • Zhang, G., Patuwo, B. E., & Hu, M. Y. (1998). Forecasting with artificial neural networks: the state of the art. International Journal of Forecasting, 14(1), 35–62.

    Article  Google Scholar 

  • Zhang, W., Cao, Q., & Schniederjans, M. (2004). Neural network earnings per share forecasting models: a comparative analysis of alternative methods. Decision Sciences, 35(2), 205–237.

    Article  Google Scholar 

  • Zhu, D., Premkumar, G., Zhang, X., & Chu, C. H. (2001). Data mining for network intrusion detection: a comparison of alternative methods. Decision Sciences, 32(4), 635–653.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qing Cao.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cao, Q., Parry, M.E. & Leggio, K.B. The three-factor model and artificial neural networks: predicting stock price movement in China. Ann Oper Res 185, 25–44 (2011). https://doi.org/10.1007/s10479-009-0618-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10479-009-0618-0

Keywords

Navigation