Skip to main content
Log in

A geometric connection to threshold logic via cubical lattices

  • Published:
Annals of Operations Research Aims and scope Submit manuscript

Abstract

A cut-complex is a cubical complex whose vertices are strictly separable from the rest of the vertices of the n-cube by a hyperplane of R n. These objects render geometric presentations for threshold Boolean functions, the core objects of study in threshold logic. By applying cubical lattices and geometry of rotating hyperplanes, we prove necessary and sufficient conditions to recognize the cut-complexes with 2 or 3 maximal faces. This result confirms a positive answer to an old conjecture of Metropolis-Rota concerning cubical lattices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Boros, E., Hammer, P. L., Ibaraki, T., & Kawakami, K. (1997). Polynomial time recognition of 2-monotonic positive Boolean functions given by an oracle. SIAM Journal on Computing, 26, 93–109.

    Article  Google Scholar 

  • Cepek, O., Kronus, D., & Kucera, P. (2006). Recognition of interval Boolean functions (Tech. Rep. 15-06). RUTCOR Research Report RRR, Rutgers University, New Brunswick, NJ. Accepted for publication in Annals of Mathematics and Artificial Intelligence.

  • Chen, W. Y. C., & Stanley, R. P. (1993). Derangements on the n-cube. Discrete Mathematics, 115, 65–75.

    Article  Google Scholar 

  • Ehrenborg, R., & Readdy, M. (1996). The r-cubical lattice and a generalization of the cd-index. European Journal of Combinatorics, 17, 709–725.

    Article  Google Scholar 

  • Elgot, C. C. (1960). Truth functions realizable by single threshold organs. In AIEE conf. paper, 60-1311 (Oct. 1960); also SCTLD (Sept. 1961) (pp. 225–245).

  • Emamy-K, M. R. (1986). On the cuts and cut-number of the 4-cube. Journal of Combinatorial Theory, Series A, 41(2), 221–227.

    Article  Google Scholar 

  • Emamy-K, M. R. (1988). On the covering cuts of C d, d≤5. Discrete Mathematics, 68, 191–196.

    Article  Google Scholar 

  • Emamy-K, M. R. (1999). Geometry of cut-complexes and threshold logic. Journal of Geometry, 65, 91–100.

    Article  Google Scholar 

  • Emamy-K, M. R. (2000). Elements of convex polytopes. UPR Lecture Notes.

  • Emamy-K, M. R. (2004). A new elementary proof for an old theorem on convex sets. Congressus Numerantium, 170, 107–112.

    Google Scholar 

  • Davey, B. A., & Priestley, H. A. (2002). Introduction to lattice and order. Cambridge: Cambridge University Press.

    Google Scholar 

  • Grünbaum, B. (1975). Polytopal graph. MAA Studies in Mathematics, 12, 201–224.

    Google Scholar 

  • Grünbaum, B. (2003). In V. Kaibel, V. Klee, & G. M. Ziegler (Eds.), Convex polytopes. Berlin: Springer.

    Chapter  Google Scholar 

  • Hu, S.-T. (1965). Threshold logic. Berkeley: University of California Press.

    Google Scholar 

  • Klee., V. (1999). Shapes of the future. Some unresolved problems in high-dimensional intuitive geometry. In Proceedings of the 11th Canadian conference on computational geometry (p. 17).

  • Metropolis, N., & Rota, G.-C. (1978a). On the lattice of faces of the n-cube. Bulletin of the American Mathematical Society, 84(2), 284–286.

    Article  Google Scholar 

  • Metropolis, N., & Rota, G.-C. (1978b). Combinatorial structure of the faces of the n-cube. SIAM Journal on Applied Mathematics, 35(4), 689–694.

    Article  Google Scholar 

  • Peled, U., & Simeone, B. (1994). A O(nm)-time algorithm for computing the dual of a regular Boolean function. Discrete Applied Mathematics, 49(1–3), 309–323.

    Article  Google Scholar 

  • Saks, M. E. (1993). Slicing the hypercube. In Surveys in combinatorics (pp. 211–255). Cambridge: Cambridge University Press.

    Chapter  Google Scholar 

  • Stanley, R. P. (2002). Enumerative combinatorics (Vol. 1). Cambridge: Cambridge University Press.

    Google Scholar 

  • Sohler, C., & Ziegler, G. M. (2000). Computing cut numbers. In Proceedings of the 12th CCCG (p. 17).

  • Muroga, S. (1971). Threshold logic and its applications. Toronto: Wiley.

    Google Scholar 

  • Winder, R. O. (1962). Threshold logic. PhD. dissertation, Math. Dept., Princeton University.

  • Ziegler, G. M. (1994). Lectures on polytopes. Berlin: Springer.

    Google Scholar 

  • Ziegler, G. M. (2000). http://www.uni-paderborn.de/cs/cubecuts.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. R. Emamy-K.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Emamy-K, M.R. A geometric connection to threshold logic via cubical lattices. Ann Oper Res 188, 141–153 (2011). https://doi.org/10.1007/s10479-009-0593-5

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10479-009-0593-5

Keywords

Navigation