Skip to main content

Advertisement

Log in

Nature inspired genetic algorithms for hard packing problems

  • Published:
Annals of Operations Research Aims and scope Submit manuscript

Abstract

This paper presents two novel genetic algorithms (GAs) for hard industrially relevant packing problems. The design of both algorithms is inspired by aspects of molecular genetics, in particular, the modular exon-intron structure of eukaryotic genes. Two representative packing problems are used to test the utility of the proposed approach: the bin packing problem (BPP) and the multiple knapsack problem (MKP). The algorithm for the BPP, the exon shuffling GA (ESGA), is a steady-state GA with a sophisticated crossover operator that makes maximum use of the principle of natural selection to evolve feasible solutions with no explicit verification of constraint violations. The second algorithm, the Exonic GA (ExGA), implements an RNA inspired adaptive repair function necessary for the highly constrained MKP. Three different variants of this algorithm are presented and compared, which evolve a partial ordering of items using a segmented encoding that is utilised in the repair of infeasible solutions. All algorithms are tested on a range of benchmark problems, and the results indicate a very high degree of accuracy and reliability compared to other approaches in the literature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Alvim, A. C. F., Ribeiro, C. C., Glover, F., & Aloise, D. J. (2004). A hybrid improvment heuristic for the one-dimensional bin packing problem. Journal of Heuristics, 10, 205–229.

    Article  Google Scholar 

  • Atlan, H. (2003). The living cell as a paradigm for complex natural systems. ComPlexUs, 1, 1–3.

    Article  Google Scholar 

  • Bass, B. L. (1997). RNA editing and hypermutation by adenosine deamination. Trends in Biochemical Sciences, 22(5), 157–162.

    Article  Google Scholar 

  • Bean, J. C. (1994). Genetic algorithms with random keys for sequencing and optimization. ORSA Journal on Computing, 6, 154–160.

    Google Scholar 

  • Bein, W., Correa, J. R., & Han, X. (2008). A fast asymptotic approximation scheme for bin packing with rejection. Theoretical Computer Science, 393(1–3), 14–22.

    Article  Google Scholar 

  • Blake, C. C. F. (1978). Do genes-in-pieces imply proteins-in-pieces? Nature, 273, 267.

    Article  Google Scholar 

  • Coffman, E. G., Garey, M. R., & Johnson, D. S. (1978). An application of bin-packing to multimachine scheduling. Journal of Computing, 7, 1–17.

    Google Scholar 

  • Cotta, C., & Troya, J. M. (1997). A hybrid genetic algorithm for the 0–1 multiple knapsack problem. In G. D. Smith, N. C. Steele, & R. F. Albrecht (Eds.), Proceedings of the 1997 international conference on artificial neural networks and genetic algorithms (pp. 250–254). Berlin: Springer.

    Google Scholar 

  • Daida, J. M., Yalcin, S. P., Litvak, P. M., Eickhoff, G. A., & Polit, J. A. (1999). Of metaphors and Darwinism: Deconstructing genetic programming’s chimera. In P. J. Angeline, Z. Michalewicz, M. Schoenauer, X. Yao, & A. Zalzala (Eds.), Proceedings of the 1999 IEEE congress on evolutionary computation (Vol. 1, pp. 453–462).

  • Falkenauer, E. (1996). A hybrid grouping genetic algorithm for bin packing. Journal of Heuristics, 2, 5–30.

    Article  Google Scholar 

  • Fleszar, K., & Hindi, K. S. (2002). New heuristics for one-dimensional bin-packing. Computers & Operations Research, 29, 821–839.

    Article  Google Scholar 

  • Freeland, S. (2003). Three fundamentals of the biological genetic algorithm. In R. Riolo & B. Worzel (Eds.), Genetic programming, theory and practice (pp. 303–311). Dordrecht: Kluwer Academic.

    Google Scholar 

  • Gilbert, W. (1978). Why genes in pieces? Nature, 271(5645), 501.

    Article  Google Scholar 

  • Grefenstette, J. J. (1987). Incorporating problem specific knowledge into genetic algorithms. In L. Davis (Ed.), Genetic algorithms and simulated annealing (pp. 42–60). San Mateo: Morgan Kaufmann.

    Google Scholar 

  • Gréwal, G., Coros, S., Banerji, D., & Morton, A. (2006). Comparing a genetic algorithm penalty function and repair heuristic in the DSP application domain. In Artificial intelligence and applications (pp. 31–39).

  • Gupta, J. N. D., & Ho, J. C. (1999). A new heuristic algorithms of the one-dimensional bin-packing problem. Production Planning & Control, 10(6), 598–603.

    Article  Google Scholar 

  • Herbet, A., & Rich, A. (1999). RNA processing and the evolution of eukaryotes. Nature Genetics, 21, 265–269.

    Article  Google Scholar 

  • Higuchi, M., Single, F. N., Kohler, M., Sommer, B., Sprengel, R., & Seeburg, P. H. (1993). RNA editing of AMPA receptor subunit GluR-B: A base-pared intron exon structure determines position and efficieny. Cell, 75, 1361–1370.

    Article  Google Scholar 

  • Holland, J. H. (1975). Adaptation in natural and artifical systems. Ann Arbor: University of Michigan Press.

    Google Scholar 

  • Iima, H., & Yakawa, T. (2003). A new design of genetic algorithm for bin packing. In The 2003 congress on evolutionary computation (Vol. 2, pp. 1044–1049).

  • Jun, Y., Xiande, L., & Lu, H. (2003). Evolutionary game algorithm for multiple knapsack problem. In Proceedings of the IEEE/WIC international conference on intelligent agent technology (pp. 424–427). New York: IEEE Press.

    Google Scholar 

  • Kao, C.-Y., & Lin, F.-T. (1992). A stochastic approach for the one-dimensional bin-packing problems. In Systems, man and cybernetics 1992 (Vol. 2, pp. 1545–1551).

  • Khuri, S., Bäck, T., & Heitkötter, J. (1994). The zero/one multiple knapsack problem and genetic algorithms. In E. Deaton, D. Oppenheim, & J. Urban (Eds.), Proceedings of the 1994 ACM symposium of applied computation proceedings (pp. 188–193). New York: Assoc. Comput. Mach.

    Chapter  Google Scholar 

  • Kimbrough, S., Lu, M., Wood, D., & Wu, D. J. (2002). Exploring a two-market genetic algorithm. In Proceedings of the 2002 genetic and evolutionary computation conference, California (pp. 415–422). San Mateo: Morgan Kaufmann.

    Google Scholar 

  • Kolkman, J. A., & Stemmer, W. P. C. (2001). Directed evolution of proteins by exon shuffling. Nature Biotechnology, 19, 423–428.

    Article  Google Scholar 

  • Langton, C. G. (1992). Artificial life. In L. Nadel (Ed.), Lectures in complex systems (pp. 189–241). Reading: Addison-Wesley.

    Google Scholar 

  • Maynard Smith, J., & Szathmãry, E. (1999). The origins of life: from the birth of life to the origins of language. London: Oxford University Press.

    Google Scholar 

  • Mitchell, M. (1996). An introduction to genetic algorithms. Cambridge: MIT Press.

    Google Scholar 

  • Patthy, L. (2003). Modular assembly of genes and the evolution of new functions. Genetica, 118, 217–231.

    Article  Google Scholar 

  • Rohlfshagen, P., & Bullinaria, J. A. (2006). An exonic genetic algorithm with RNA editing inspired repair function for the multiple knapsack problem. In Proceedings of the 2006 UK workshop on computational intelligence, Leeds, UK (pp. 17–24).

  • Rohlfshagen, P., & Bullinaria, J. A. (2007). A genetic algorithm with exon shuffling crossover for hard bin packing problems. In Proceedings of the 2007 genetic and evolutionary computation conference (pp. 1365–1371). New York: Assoc. Comput. Mach.

    Chapter  Google Scholar 

  • Roy, S. W. (2003). Recent evidence for the exon theory of genes. Genetica, 118(2–3), 251–266.

    Article  Google Scholar 

  • Scholl, A., Klein, R., & Juergens, C. (1997). Bison: A fast hybrid procedure for exactly solving the one-dimensional bin packing problem. Computers & Operations Research, 24(7), 627–645.

    Article  Google Scholar 

  • Silvano, M., & Paolo, T. (1990). Knapsack problems, algorithms and computer implementations (pp. 221–245). New York: Wiley. Chapt. Bin-packing problem.

    Google Scholar 

  • Spector, L. (2003). An essay concerning human understanding of genetic programming. In R. Riolo & B. Worzel (Eds.), Genetic programming theory and practice (pp. 11–22).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to John A. Bullinaria.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rohlfshagen, P., Bullinaria, J.A. Nature inspired genetic algorithms for hard packing problems. Ann Oper Res 179, 393–419 (2010). https://doi.org/10.1007/s10479-008-0464-5

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10479-008-0464-5

Keywords

Navigation