Skip to main content
Log in

A novel non-linear approach to minimal area rectangular packing

  • Published:
Annals of Operations Research Aims and scope Submit manuscript

Abstract

This paper discusses the minimal area rectangular packing problem which is to pack a given set of rectangles into a rectangular container of minimal area such that no two rectangles overlap. Current approaches for this problem rely on metaheuristics like simulated annealing, on constraint programming or on non-linear models. Difficulties arise from the non-convexity and the combinatorial complexity. We investigate different mathematical programming approaches for this and introduce a novel approach based on non-linear optimization and the “tunneling effect” achieved by a relaxation of the non-overlapping constraints. We compare our optimization algorithm to a simulated annealing and a constraint programming approach and show that our approach is competitive. Additionally, since it is easy to extend, it is also applicable to a variety of related problems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Ababei, C., Feng, Y., Goplen, B., Mogal, H., Bazargan, K., Sapatnekar, S. S., & Zhang, T. (2005). Placement and routing in 3D integrated circuits. IEEE Design and Test of Computers, 22(6), 520–531.

    Article  Google Scholar 

  • Ali, M., Törn, A., & Viitanen, S. (1997). A direct search simulated annealing algorithm for optimization involving continuous variables (Technical Report TUCS-TR-97).

  • Alon, A., & Ascher, U. (1988). Model and solution strategy for placement of rectangular blocks in the euclidean plane. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, 7(3), 378–386.

    Article  Google Scholar 

  • Amossen, R. R., & Pisinger, D. (2006). Multi-dimensional bin packing problems with guillotine constraints. Computers and Operations Research.

  • Anagnostopoulos, A., Michel, L., Hentenryck, P., & Vergados, Y. (2006). A simulated annealing approach to the traveling tournament problem. Journal of Scheduling, 9(2), 177–193.

    Article  Google Scholar 

  • Bansal, N., & Sviridenko, M. (2004). New approximability and inapproximability results for 2-dimensional bin packing. In Proceedings of the fifteenth annual SIAM symposium on discrete algorithms (pp. 196–203). Philadelphia, PA, USA. Philadelphia: Society for Industrial and Applied Mathematics.

    Google Scholar 

  • Bazaraa, M., Sherali, H. D., & Shetty, C. (1993). Nonlinear programming: theory and algorithms (2nd ed.). New York: Wiley.

    Google Scholar 

  • Berger, M. (2006). Module placement in 2.5D system in package design automation. Master’s thesis, University of Applied Sciences, Mittweida.

  • Birgin, E. G., Martìnez, J. M., Nishihara, F. H., & Ronconi, D. P. (2006). Orthogonal packing of rectangular items within arbitrary convex regions by nonlinear optimization. Computers and Operations Research, 33(12), 3535–3548.

    Article  Google Scholar 

  • Blum, C., & Roli, A. (2003). Metaheuristics in combinatorial optimization: Overview and conceptual comparison. ACM Computing Surveys, 35(3), 268–308.

    Article  Google Scholar 

  • Burke, J. V., & Xu, S. (2000). A non-interior predictor-corrector path-following algorithm for the monotone linear complementarity problem. Mathematical Programming, A87, 113–130.

    Google Scholar 

  • Chang, Y. C., Chang, Y.-W., Wu, G. M., & Wu, S. W. (2000). B*-trees: A new representation for non-slicing floorplans. In Proceedings of the 37th conference on design automation (pp. 458–463).

  • Chen, B., Chen, X., & Kanzow, C. (2000). A penalized Fischer-Burmeister NCP-function. Mathematical Programming, 88(1), 211–216.

    Article  Google Scholar 

  • Chen, B., & Harker, P. T. (1993). A non-interior-point continuation method for linear complementarity problems. SIAM Journal on Matrix Analysis and Applications, 14(4), 1168–1190.

    Article  Google Scholar 

  • Clautiaux, F., Jouglet, A., Carlier, J., & Moukrim, A. (2008). A new constraint programming approach for the orthogonal packing problem. Computers and Operations Research, 35(3), 944–959.

    Article  Google Scholar 

  • Coffman, E. G., Garey, M. R., & Johnson, D. S. (1996). Approximation algorithms for bin packing: A survey. In D. Hochbaum (Ed.), Approximation algorithms for NP-hard problems (pp. 46–93). Boston: PWS Publishing.

    Google Scholar 

  • Dorneich, M. C., & Sahinidis, N. V. (1995). Global optimization algorithms for chip layout and compaction. Engineering Optimization, 25(2), 131–154.

    Article  Google Scholar 

  • Fasano, G. (2004). A MIP approach for some practical packing problems: Balancing constraints and tetris-like items. 4OR: A Quarterly Journal of Operations Research, 2(2), 161–174.

    Google Scholar 

  • Goetschalckx, M., & Irohara, T. (2007). Efficient formulations for the multi-floor facility layout problem with elevators. Optimization Online.

  • Guo, P.-N., Cheng, C.-K., & Yoshimura, T. (1999). An O-Tree representation of non-slicing floorplan and its applications. In Proceedings of the 1999 design automation conference (pp. 268–273).

  • Herrigel, A., & Fichtner, W. (1989). An analytic optimization technique for placement of macro-cells. In DAC ’89: Proceedings of the 26th ACM/IEEE conference on design automation (pp. 376–381). New York, NY, USA. New York: ACM Press.

    Chapter  Google Scholar 

  • Horst, R., & Tuy, H. (1996). Global optimization: deterministic approaches (3rd ed.). Heidelberg: Springer.

    Google Scholar 

  • Kirkpatrick, S., Gelatt, C. D., & Vecchi, M. P. (1983). Optimization by simulated annealing. Science, 220(4598).

  • Kolonko, M. (1999). Some new results on simulated annealing applied to the job shop scheduling problem. European Journal of Operational Research, 113(1), 123–136.

    Article  Google Scholar 

  • Levy, A. V., & Montalvo, A. (1985). The tunneling algorithm for the global minimization of functions. SIAM Journal on Scientific and Statistical Computing, 6(1), 15–29.

    Article  Google Scholar 

  • Lin, J. M., & Chang, Y.-W. (2001). TCG: A transitive closure graph-based representation for non-slicing floorplans. In Proceedings of the 2001 design automation conference (pp. 764–769).

  • Luenberger, D. G. (1989). Linear and nonlinear programming. Reading: Addison-Wesley.

    Google Scholar 

  • Moffitt, M. D., & Pollack, M. E. (2006). Optimal rectangle packing: A Meta-CSP approach. In Proceedings of the 16th international conference on automated planning and scheduling.

  • Murata, H., Fujiyoshi, K., Nakatake, S., & Kajitani, Y. (1996). VLSI module placement based on rectangle-packing by the sequence-pair. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, 15(12), 1518–1524.

    Article  Google Scholar 

  • Pisinger, D. (2007). Denser packings obtained in O(n log log n) time. INFORMS Journal of Computing, 19(3), 395–405.

    Article  Google Scholar 

  • Rossi, F., van Beek, P., & Walsh, T. (2006). Handbook of constraint programming. Amsterdam: Elsevier B.V.

    Google Scholar 

  • Stein, O. (2003). Bi-level strategies in semi-infinite programming. Boston: Kluwer.

    Google Scholar 

  • Sun, D., & Qi, L. (1999). On NCP-functions. Computational Optimization and Applications, 13, 201–220.

    Article  Google Scholar 

  • Tang, X., Tian, R., & Wong, D. F. (2001). FAST-SP: A fast algorithm for block placement based on sequence pair. In Proceedings of the 2001 Asia and South Pacific design automation conference (pp. 521–526). New York: ACM Press.

    Google Scholar 

  • Wang, Y.-J., & Zhang, J.-S. (2007). An efficient algorithm for large scale global optimization of continuous functions. Journal of Computational and Applied Mathematics, 206(2), 1015–1026.

    Article  Google Scholar 

  • Winterfeld, A. (2007). Large-scale semi-infinite optimization applied to industrial gemstone cutting. PhD thesis, University of Kaiserslautern.

  • Wong, D. F., & Liu, C. L. (1986). A new algorithm for floorplan design. In DAC ’86: Proceedings of the 23rd ACM/IEEE conference on design automation (pp. 101–107). Piscataway, NJ, USA. New York: IEEE Press.

    Chapter  Google Scholar 

  • Wright, S. J. (1997). Primal-dual interior-point methods. Philadelphia: SIAM.

    Google Scholar 

  • Yao, B., Chen, H., Cheng, C.-K., & Graham, R. L. (2003). Floorplan representations: Complexity and connections. ACM Transactions on Design of Automated Electronic Systems, 8(1), 55–80.

    Article  Google Scholar 

  • Ye, Y. (1997). Interior point algorithms, theory and analysis. New York: Wiley.

    Google Scholar 

  • Zhan, Y., Feng, Y., & Sapatnekar, S. S. (2006). A fixed-die floorplanning algorithm using an analytical approach. In Proceedings of the 2006 conference on Asia South Pacific design automation (pp. 771–776). New York, NY, USA. New York: ACM Press.

    Chapter  Google Scholar 

  • Zhang, J. Z., & Kim, N. H. (1985). An improved successive linear programming algorithm. Management Science, 31(10), 1312–1331.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Volker Maag.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Maag, V., Berger, M., Winterfeld, A. et al. A novel non-linear approach to minimal area rectangular packing. Ann Oper Res 179, 243–260 (2010). https://doi.org/10.1007/s10479-008-0462-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10479-008-0462-7

Keywords

Navigation