Skip to main content

Advertisement

Log in

Interior point method for long-term generation scheduling of large-scale hydrothermal systems

  • Published:
Annals of Operations Research Aims and scope Submit manuscript

Abstract

This paper presents an interior point method for the long-term generation scheduling of large-scale hydrothermal systems. The problem is formulated as a nonlinear programming one due to the nonlinear representation of hydropower production and thermal fuel cost functions. Sparsity exploitation techniques and an heuristic procedure for computing the interior point method search directions have been developed. Numerical tests in case studies with systems of different dimensions and inflow scenarios have been carried out in order to evaluate the proposed method. Three systems were tested, with the largest being the Brazilian hydropower system with 74 hydro plants distributed in several cascades. Results show that the proposed method is an efficient and robust tool for solving the long-term generation scheduling problem.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Adler, I., Karmarkar, N., Resende, M. G. C., & Veiga, G. (1989). An implementation of Karmarkar’s algorithm for linear programming. Mathematical Programming, 44, 297–335.

    Article  Google Scholar 

  • Altman, A., & Gondzio, J. (1999). Regularized symmetric indefinite systems in interior point methods for linear and quadratic optimization. Optimization Methods and Software, 11(12), 275–302.

    Article  Google Scholar 

  • Aravanitidis, N. V., & Rosing, J. (1970). Composite representation of a multireservoir hydroelectric power system. IEEE Transactions on Power Apparatus and Systems, PAS-89(2), 327–335.

    Article  Google Scholar 

  • Barros, M., Tsai, F. T. C., Yang, S.-L., Lopes, J.E.G., & Yeh, W. W. G. (2003). Optimization of large-scale hydropower system operations. Journal of Water Resources Planning and Management, 129(3), 178–188.

    Article  Google Scholar 

  • Bellman, R. (1962). Dynamic programming. Princeton: Princeton University Press.

    Google Scholar 

  • Benson, H., Shanno, D., & Vanderbei, R. (2000). Interior point methods for nonconvex nonlinear programming: Jamming and comparative numerical testing. Technical report ORFE-00-02, Operation Research and Financial Engineering, Princeton University. http://www.princeton.edu/~rvdb/ps/loqo3_5.pdf.

  • Carvalho, M., & Soares, S. (1987). An efficient hydrothermal scheduling algorithm. IEEE Transactions on Power Apparatus and Systems, PWRS-2(3), 537–542.

    Google Scholar 

  • Christoforidis, M., Aganagic, M., Awobamise, B., Tong, S., & Rahimi, A. F. (1996). Long-term/mid-term resource optimization of a hydro-dominant power system using interior point method. IEEE Transactions on Power Apparatus and Systems, 11(1), 287–294.

    Google Scholar 

  • Coleman, T., & Li, Y. (1994). On the convergence of reflective newton methods for large-scale nonlinear minimization subject to bounds. Mathematical Programming, 67(2), 189–224.

    Article  Google Scholar 

  • Dembo, R. S. (1991). Scenario optimization. Annals of Operations Research, 30(1), 63–80.

    Article  Google Scholar 

  • Dikin, I. I. (1967). Iterative solution of problems of linear and quadratic programming. Soviet Mathematics. Doklady, 8(1), 674–675.

    Google Scholar 

  • Escudero, L. F., a, J. L. G., & Pietro, F. J. (1996). Hydropower generation management under uncertainty via scenario analysis and parallel computation. IEEE Transactions on Power Apparatus and Systems, 11(2), 683–689.

    Google Scholar 

  • Fletcher, R. (1970). A new approach to variable metric algorithms. Computer Journal, 13(1), 317–322.

    Article  Google Scholar 

  • Fletcher, R., & Powell, M. (1963). A rapidly convergent descent method for minimization. Computer Journal, 6(1), 163–168.

    Google Scholar 

  • Gagnon, C. R., Hicks, R. H., Jacoby, S. L. S., & Kowalik, J. S. (1974). A nonlinear programming approach to a very large hydroelectric system optimization. IEEE Transactions on Power Apparatus and Systems, 6(1), 28–41.

    Google Scholar 

  • Goldfarb, D. (1970). A family of variable metric updates derived by variational means. Mathematics of Computing, 24, 23–26.

    Article  Google Scholar 

  • Gondzio, J., & Sarkissian, R. (2003). Parallel interior point solver for structured linear programs. Mathematical Programming, 96(3), 561–584.

    Article  Google Scholar 

  • Granville, S. (1994). Optimal reactive dispatch through interior point methods. IEEE Transactions on Power Apparatus and Systems, 9(1), 136–146.

    Google Scholar 

  • Hanscom, M. A., Lansdom, L., & Provonost, G. (1980). Modeling and resolution of the medium term energy generation planning problem for a large hydroelectric system. Management Science, 26(7), 659–668.

    Article  Google Scholar 

  • Karmarkar, N. (1984). A new polynomial-time algorithm for linear programming. Combinatorica, 4, 373–395.

    Article  Google Scholar 

  • Lyra, C., & Tavares, H. (1988). A contribution to the midterm scheduling of large scale hydrothermal power systems. IEEE Transactions on Power Apparatus and Systems, 3(3), 852–857.

    Google Scholar 

  • Martinez, L., & Soares, S. (2002). Comparison between closed-loop and partial open-loop feedback control policies in long term hydrothermal scheduling. IEEE Transactions on Power Apparatus and Systems, 17(2), 330–336.

    Google Scholar 

  • Medina, J., Quintana, V., & Conejo, A. (1999). A clipping-off interior-point technique for medium-term hydro-thermal coordination. IEEE Transactions on Power Apparatus and Systems, 14(1), 266–273.

    Google Scholar 

  • Mehrotra, S. (1992). On the implementation of primal-dual interior point method. SIAM Journal on Optimization, 2(4), 575–601.

    Article  Google Scholar 

  • Nabona, N. (1993). Multicommodity network flow model for long-term hydrogeneration optimization. IEEE Transactions on Power Apparatus and Systems, 8(2), 395–404.

    Google Scholar 

  • Oliveira, A. R. L., Soares, S., & Nepomuceno, L. (2003). Optimal active power dispatch combining network flow and interior point approaches. IEEE Transactions on Power Apparatus and Systems, 18(4), 1235–1240.

    Google Scholar 

  • Oliveira, G. G., & Soares, S. (1995). A second-order network flow algorithm for hydrothermal scheduling. IEEE Transactions on Power Apparatus and Systems, 10(3), 1652–1641.

    Google Scholar 

  • Pereira, M. V. F., & Pinto, L. M. V. G. (1991). Multi-stage stochastic optimization applied to energy planning. Mathematical Programming, 52(2), 359–375.

    Article  Google Scholar 

  • Ponnambalam, K. (2002). Optimization in water reservoir systems. In P. M. Pardalos & G. C. M. Mauricio (Eds.), Handbook of applied optimization (pp. 933–943). Oxford: Oxford University Press.

    Google Scholar 

  • Ponnambalam, K., Quintana, V. H., & Vanelli, A. (1992). A fast algorithm for power system optimization problems using an interior point method. IEEE Transactions on Power Apparatus and Systems, 7(2), 659–668.

    Google Scholar 

  • Quintana, V. H., Torres, G. L., & Medina-Palomo, J. (2000). Interior-point methods and their applications to power systems: Classification of publications and software codes. Operations Research, 29(4), 763–785.

    Google Scholar 

  • Rosenthal, R. E. (1981). A nonlinear network flow algorithm for maximization of benefits in a hydroelectric power system. Operations Research, 29(4), 763–785.

    Article  Google Scholar 

  • Saad, M., Birgas, P., Turgeon, A., & Duquette, R. (1996). Fuzzy learning decomposition for the scheduling of hydroelectric power systems. Water Resources Research, 32(1), 179–186.

    Article  Google Scholar 

  • Sjvelgren, D., Anderson, S., Anderson, T., Nyberg, U., & Dillon, T. S. (1983). Optimal operations planning in a large hydro-thermal power system. IEEE Transactions on Power Apparatus and Systems, PAS-102(11), 3644–3651.

    Article  Google Scholar 

  • Soares, S., & Salmazo, C. T. (1997). Minimum loss predispatch model for hydroelectric power systems. IEEE Transactions on Power Apparatus and Systems, 12(3), 1220–1228.

    Google Scholar 

  • Torres, G. L., & Quintana, V. H. (1998). An interior-point method for nonlinear optimal power flow using voltage rectangular coordinates. IEEE Transactions on Power Apparatus and Systems, 13(4), 1211–1218.

    Google Scholar 

  • Turgeon, A. (1980). Optimal operation of multireservoir systems with stochastic inflows. Water Resources Research, 16(2), 275–283.

    Article  Google Scholar 

  • Valdes, J. B., Filippo, J. M. D., Strzepek, K. M., & Restrepo, P. J. (1995). Aggregation-disaggregation approach to multireservoir operation. ASCE Journal of Water Resource Planning Management, 121(5), 345–351.

    Article  Google Scholar 

  • Wright, S. J. (1996). Primal-dual interior-point methods. Philadelphia: SIAM.

    Google Scholar 

  • Yan, X., & Quintana, V. H. (1997). An efficient predictor-corrector interior point algorithm for security-constrained economic dispatch. IEEE Transactions on Power Apparatus and Systems, 12(2), 803–810.

    Google Scholar 

  • Zhang, Y. (1995). Solving large-scale linear programs by interior-point methods under the Matlab environment. Technical Report TR96-01, Department of Mathematics and Statistics, University of Maryland, Baltimore County, Baltimore, MD.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anibal Tavares Azevedo.

Additional information

This research was supported in part by the Foundation for the Support of Research of the State of São Paulo (FAPESP), by the Brazilian Council for the Development of Science and Technology (CNPq), and by the Superior Level Coordination for Personal Development (CAPES), Brazil.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Azevedo, A.T., Oliveira, A.R.L. & Soares, S. Interior point method for long-term generation scheduling of large-scale hydrothermal systems. Ann Oper Res 169, 55–80 (2009). https://doi.org/10.1007/s10479-008-0389-z

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10479-008-0389-z

Keywords

Navigation