Skip to main content

Advertisement

Log in

The dial-a-ride problem: models and algorithms

  • Published:
Annals of Operations Research Aims and scope Submit manuscript

Abstract

The Dial-a-Ride Problem (DARP) consists of designing vehicle routes and schedules for n users who specify pickup and delivery requests between origins and destinations. The aim is to plan a set of m minimum cost vehicle routes capable of accommodating as many users as possible, under a set of constraints. The most common example arises in door-to-door transportation for elderly or disabled people. The purpose of this article is to review the scientific literature on the DARP. The main features of the problem are described and a summary of the most important models and algorithms is provided.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Aldaihani, M., & Dessouky, M. M. (2003). Hybrid scheduling methods for paratransit operations. Computers & Industrial Engineering, 45, 75–96.

    Article  Google Scholar 

  • Bodin, L. D., & Sexton, T. (1986). The multi-vehicle subscriber dial-a-ride problem. TIMS Studies in Management Science, 2, 73–86.

    Google Scholar 

  • Borndörfer, R., Klostermeier, F., Grötschel, M., & Küttner, C. (1997). Telebus Berlin: vehicle scheduling in a dial-a-ride system, Technical report SC 97-23, Konrad-Zuse-Zentrum für Informationstechnik, Berlin.

  • Brotcorne, L., Laporte, G., & Semet, F. (2003). Ambulance location and relocation models. European Journal of Operational Research, 147, 451–468.

    Article  Google Scholar 

  • Colorni, A., & Righini, G. (2001). Modeling and optimizing dynamic dial-a-ride problems. International Transactions in Operational Research, 8, 155–166.

    Article  Google Scholar 

  • Cordeau, J.-F. (2006). A Branch-and-cut algorithm for the dial-a-ride problem. Operations Research, 54, 573–586.

    Article  Google Scholar 

  • Cordeau, J.-F., & Laporte, G. (2003a). A tabu search heuristic for the static multi-vehicle dial-a-ride problem. Transportation Research B, 37, 579–594.

    Article  Google Scholar 

  • Cordeau, J.-F., & Laporte, G. (2003b). The dial-a-ride problem (DARP): variants, modeling issues and algorithms. 4OR: A Quarterly Journal of Operations Research, 1, 89–101.

    Google Scholar 

  • Cordeau, J.-F., Laporte, G., & Mercier, A. (2001). A unified tabu search heuristic for vehicle routing problems with time windows. Journal of the Operational Research Society, 52, 928–936.

    Article  Google Scholar 

  • Cordeau, J.-F., Laporte, G., Potvin, J.-Y., & Savelsbergh, M. W. P. (2007a). Transportation on demand. In C. Barnhart & G. Laporte (Eds.), Transportation. Amsterdam: Elsevier.

    Google Scholar 

  • Cordeau, J.-F., Laporte, G., Savelsbergh, M. W. P., & Vigo, D. (2007b). Vehicle routing. In C. Barnhart & G. Laporte (Eds.), Transportation. Amsterdam: Elsevier.

    Google Scholar 

  • Coslovich, L., Pesenti, R., & Ukovich, W. (2006). A two-phase insertion technique of unexpected customers for a dynamic dial-a-ride problem. European Journal of Operational Research, 175, 1605–1615.

    Article  Google Scholar 

  • Desrosiers, J., Dumas, Y., & Soumis, F. (1986). A dynamic programming solution of the large-scale single-vehicle dial-a-ride problem with time windows. American Journal of Mathematical and Management Sciences, 6, 301–325.

    Google Scholar 

  • Desrosiers, J., Dumas, Y., Soumis, F., Taillefer, S., & Villeneuve, D. (1991). An algorithm for mini-clustering in handicapped transport. Les Cahiers du GERAD, G-91-02, HEC Montréal.

  • Diana, M., & Dessouky, M. M. (2004). A new regret insertion heuristic for solving large-scale dial-a-ride problems with time windows. Transportation Research Part B, 38, 539–557.

    Article  Google Scholar 

  • Dumas, Y., Desrosiers, J., & Soumis, F. (1989a). Large scale multi-vehicle dial-a-ride problems. Les Cahiers du GERAD, G-89-30, HEC Montréal.

  • Dumas, Y., Soumis, F., & Desrosiers, J. (1989b). Optimizing the schedule for a fixed vehicle path with convex inconvenience cost. Les Cahiers du GERAD, G-89-08, HEC Montréal.

  • Fu, L. (2002). Scheduling dial-a-ride paratransit under time-varying, stochastic congestion. Transportation Research B, 36, 485–506.

    Article  Google Scholar 

  • Gendreau, M., Hertz, A., & Laporte, G. (1994). A tabu search heuristic for the vehicle routing problem. Management Science, 40, 1276–1290.

    Google Scholar 

  • Gendreau, M., Laporte, G., & Semet, F. (2001). A dynamic model and parallel tabu search algorithm for real-time ambulance relocation. Parallel Computing, 27, 1641–1653.

    Article  Google Scholar 

  • Hunsaker, B., & Savelsbergh, M. W. P. (2002). Efficient feasibility testing for dial-a-ride problems. Operations Research Letters, 30, 169–173.

    Article  Google Scholar 

  • Ioachim, I., Desrosiers, J., Dumas, Y., & Solomon, M. M. (1995). A request clustering algorithm for door-to-door handicapped transportation. Transportation Science, 29, 63–78.

    Google Scholar 

  • Jaw, J., Odoni, A. R., Psaraftis, H. N., & Wilson, N. H. M. (1986). A heuristic algorithm for the multi-vehicle advance-request dial-a-ride problem with time windows. Transportation Research B, 20, 243–257.

    Article  Google Scholar 

  • Jørgensen, R. M., Larsen, J., & Bergvinsdottir, K. B. (2007, in press). Solving the dial-a-ride problem using genetic algorithms. Journal of the Operational Research Society.

  • Madsen, O. B. G., Ravn, H. F., & Rygaard, J. M. (1995). A heuristic algorithm for the a dial-a-ride problem with time windows, multiple capacities, and multiple objectives. Annals of Operations Research, 60, 193–208.

    Article  Google Scholar 

  • Melachrinoudis, E., Ilhan, A. B., & Min, H. (2007). A dial-a-ride problem for client transportation in a health-care organization. Computers & Operations Research, 34, 742–759.

    Article  Google Scholar 

  • Mitrović-Minić, S., Krishnamurti, R., & Laporte, G. (2004). Double-horizon based heuristics for the dynamic pickup and delivery problem with time windows. Transportation Research B, 38, 669–685.

    Article  Google Scholar 

  • Pallottino, P., & Scutellà, M. G. (1998). Shortest path algorithms in transportation models: classical and innovative aspects. In P. Marcotte & S. Nguyen (Eds.), Equilibrium and advanced transportation modelling (pp. 245–281). Boston: Kluwer.

    Google Scholar 

  • Psaraftis, H. N. (1980). A dynamic programming approach to the single-vehicle, many-to-many immediate request dial-a-ride problem. Transportation Science, 14, 130–154.

    Google Scholar 

  • Psaraftis, H. N. (1983). An exact algorithm for the single-vehicle many-to-many dial-a-ride problem with time windows. Transportation Science, 17, 351–357.

    Google Scholar 

  • Psaraftis, H. N. (1988). Dynamic vehicle routing problems. In B. L. Golden & A. A. Assad (Eds.), Vehicle routing: method and studies (pp. 223–248). Amsterdam: North-Holland.

    Google Scholar 

  • Psaraftis, H. N. (1995). Dynamic vehicle routing: status and prospects. Annals of Operations Research, 61, 143–164.

    Article  Google Scholar 

  • Rekiek, B., Delchambre, A., & Saleh, H. A. (2006). Handicapped person transportation: an application of the grouping genetic algorithm. Engineering Application of Artificial Intelligence, 19, 511–520.

    Article  Google Scholar 

  • Ropke, S., Cordeau, J.-F., & Laporte, G. (2007). Models and branch-and-cut algorithms for pickup and delivery problems with time windows. Networks, 49, 258–272.

    Article  Google Scholar 

  • Savelsbergh, M. W. P. (1992). The vehicle routing problem with time windows: minimizing route duration. ORSA Journal on Computing, 4, 146–154.

    Google Scholar 

  • Sexton, T. (1979). The single vehicle many-to-many routing and scheduling problem. Ph.D. dissertation, SUNY at Stony Brook.

  • Sexton, T., & Bodin, L. D. (1985a). Optimizing single vehicle many-to-many operations with desired delivery times: I. Scheduling. Transportation Science, 19, 378–410.

    Google Scholar 

  • Sexton, T., & Bodin, L. D. (1985b). Optimizing single vehicle many-to-many operations with desired delivery times: II. Routing. Transportation Science, 19, 411–435.

    Article  Google Scholar 

  • Teodorovic, D., & Radivojevic, G. (2000). A fuzzy logic approach to dynamic dial-a-ride problem. Fuzzy Sets and Systems, 116, 23–33.

    Article  Google Scholar 

  • Toth, P., & Vigo, D. (1996). Fast local search algorithms for the handicapped persons transportation problem. In I. H. Osman & J. P. Kelly (Eds.), Meta-heuristics: theory and applications (pp. 677–690). Boston: Kluwer.

    Google Scholar 

  • Toth, P., & Vigo, D. (1997). Heuristic algorithms for the handicapped persons transportation problem. Transportation Science, 31, 60–71.

    Google Scholar 

  • Wolfler Calvo, R., & Colorni, A. (2007). An effective and fast heuristic for the dial-a-ride problem. 4OR: A Quarterly Journal of Operations Research, 5, 61–73.

    Google Scholar 

  • Wong, K. I., & Bell, M. G. H. (2006). Solution of the dial-a-ride problem with multi-dimensional capacity constraints. International Transactions in Operational Research, 13, 195–208.

    Article  Google Scholar 

  • Xiang, Z., Chu, C., & Chen, H. (2006). A fast heuristic for solving a large-scale static dial-a-ride problem under complex constraints. European Journal of Operational Research, 174, 1117–1139.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jean-François Cordeau.

Additional information

This is an updated version of a paper that appeared in 4OR 1:89–101, 2003.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cordeau, JF., Laporte, G. The dial-a-ride problem: models and algorithms. Ann Oper Res 153, 29–46 (2007). https://doi.org/10.1007/s10479-007-0170-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10479-007-0170-8

Keywords

Navigation