Annals of Operations Research

, Volume 152, Issue 1, pp 395–420 | Cite as

A two-stage stochastic integer programming approach as a mixture of Branch-and-Fix Coordination and Benders Decomposition schemes

Article

Abstract

We present an algorithmic approach for solving two-stage stochastic mixed 0–1 problems. The first stage constraints of the Deterministic Equivalent Model have 0–1 variables and continuous variables. The approach uses the Twin Node Family (TNF) concept within the so-called Branch-and-Fix Coordination algorithmic framework to satisfy the nonanticipativity constraints, jointly with a Benders Decomposition scheme to solve a given LP model at each TNF integer set. As a pilot case, the structuring of a portfolio of Mortgage-Backed Securities under uncertainty in the interest rate path on a given time horizon is used. Some computational experience is reported.

Keywords

Stochastic programming Benders Decomposition Branch-and-Fix Coordination MBS portfolio structuring 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ahmed, S. and A. Shapiro. (2002). The Sample Average Approximation Method for Stochastic Programs with Integer Recourse. Atlanta, GA, USA: School of Industrial and Systems Engineering, Georgia Institute of Technology.Google Scholar
  2. Alonso-Ayuso, A., L.F. Escudero, and M.T. Ortuño. (2003). “BFC, A Branch-and-Fix Coordination Algorithmic Framework for Solving Some Types of Stochastic Pure and Mixed 0–1 Programs.” European Journal of Operational Research, 151, 503–519.CrossRefGoogle Scholar
  3. Ben-Dov, Y., L. Hayre, and V. Pica. (1992). “Mortgage Valuation Models at Prudential Securities.” Interfaces, 2, 55–71.CrossRefGoogle Scholar
  4. Benders, J.F. (1962). “Partitioning Procedures for Solving Mixed Variables Programming Problems.” Numerische Mathematik, 4, 238–252.CrossRefGoogle Scholar
  5. Birge, J.F. and F.V. Louveaux. (1997). Introduction to Stochastic Programming, Springer.Google Scholar
  6. Black, F., E. Derman, and W. Toy. (1990). “A One Factor Model of Interest Rates and Its Application to Treasury Bond Options.” Financial Analysis Journal, January/February, pp. 33–39.CrossRefGoogle Scholar
  7. Carøe, C.C. and R. Schultz. (1999). “Dual Decomposition in Stochastic Integer Programming.” Operations Research Letters, 24, 37–45.CrossRefGoogle Scholar
  8. Deng, Y., J.M. Quigley, and R. Van Order. (2000). “Mortgage Terminations, Heterogeneity and the Exercise of Mortgage Options.” Econometrica 68, 275–307.CrossRefGoogle Scholar
  9. Dunn, K.B. and J.J. McConnell. (1981). “Valuation of GNMA Mortgage-Backed Securities.” The Journal of Finance 36, 599–616.CrossRefGoogle Scholar
  10. Escudero, L.F. (1995). “Robust Portfolios for Mortgage-Backed Securities.” In S.A. Zenios (Ed.), Quantitative Methods, Super Computers and AI in Finance, pp. 201–228. Stanley Thornes.Google Scholar
  11. Frauendorfer, K. and M. Schürle. (1998). “Baricentric Approximation of Stochastic Interest Rate Processes.” In W.T. Ziemba and J.M. Mulvey (Eds.), Worldwide Asset and Liability Modeling, pp. 231–262. Cambridge University Press.Google Scholar
  12. Hayre, L. and K. Lauterbach. (1991). “Prepayment Models and Methodologies.” In F. Fabozzi (Ed.), Handbook of Fixed-Income Securities, Chapter 37. Richard D. Irwin.Google Scholar
  13. Hemmecke, R. and R. Schultz. (2001). “Decomposition Methods for Two-stage Stochastic Integer Programs.” In M. Grötschel, S.O. Krumke, and J. Rambau (Eds.), Online Optimization of Large Scale Systems, pp. 601–622 Springer.Google Scholar
  14. Kang, P. and S.A. Zenios. (1992). “Complete Prepayment Models for Mortgage Backed Securities.” Managmeent Science 38, 1665–1685.Google Scholar
  15. Klein Haneveld, W.K. and M.H. van der Vlerk (2001). “Optimizing Electricity Distribution using Integer Recourse Models.” In S. Uryasev and P.M. Pardalos (Eds.), Stochastic Optimization: Algorithms and Applications, pp. 137–154. Kluwer Academic Publishers.Google Scholar
  16. Kleywegt, A.J., A. Shapiro, and T. Homem-de Mello. (2001). “The Sample Average Approximation Method for Stochastic Discrete Optimization.” SIAM Journal on Optimization 12, 479–502.CrossRefGoogle Scholar
  17. Longstaff, F.A. (2004). “Optimal Recursive Refinancing and the Valuation of Mortgage-Backed Securities.” NBER working paper w10422, National Bureau of Economic Research, USA, www.nber.org/papers/w10422.
  18. Mulvey, J.M. and A.E. Thorlacius. (1998). “The Towers Perrin Global Capital Market Scenario Generation System.” In W.T. Ziemba and J.M. Mulvey (Eds.), Worldwide Asset and Liability Modeling, pp. 286–312. Cambridge University Press.Google Scholar
  19. Nowak, M.P., R. Schultz, and M. Westphalen. (2002). “Optimization of Simultaneous Power Production and Trading by Stochastic Integer Programming.” Stochastic Programming E-Print Series, http://dochost.rz.hu-berlin.de/speps.
  20. Römisch, W. and R. Schultz. (2001). “Multi-stage Stochastic Integer Programs: An Introduction.” In M. Grötschel, S.O. Krumke, and J. Rambau (Eds.), Online Optimization of Large Scale Systems, pp. 581–600. Springer.Google Scholar
  21. Schultz, R. (2003). “Stochastic Programming with Integer Variables.” Mathematical Programming, Series B 97, 285–309.Google Scholar
  22. Schwartz, E.S. and W.N. Torous. (1989). “Prepayment and the Valuation of Mortgage-Backed Securities.” The Journal of Finance 44, 375–392.CrossRefGoogle Scholar
  23. Stanton, R. (1995). “Rational Prepayment and the Valuation of Mortgage-Backed Securities.” The Review of Financial Studies, 8, 677–708.CrossRefGoogle Scholar
  24. Takriti, S. and J.R. Birge. (2000). “Lagrangean Solution Techniques and Bounds for Loosely Coupled Mixed-Integer Stochastic Programs.” Operations Research, 48, 91–98.CrossRefGoogle Scholar
  25. Uryasev, S. and P.M. Pardalos (Eds.). (2001). Stochastic Optimization: Algorithms and Applications, Kluwer Academic Publishers.Google Scholar
  26. Wallace, S.W. and W.T. Ziemba (Eds.). (2005). Applications of Stochastic Programming, MPS-SIAM-Series in Optimization.Google Scholar
  27. Zenios, S.A. (1993). “A Model for Portfolio Management with Mortgage-Backed Securities.” Annals of Operations Research, 43, 337–356.CrossRefGoogle Scholar
  28. Ziemba, W.T. and J.M. Mulvey (Eds.). (1998). Worldwide Asset and Liability Modeling. Cambridge University Press.Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2006

Authors and Affiliations

  • L. F. Escudero
    • 1
  • A. Garín
    • 2
  • M. Merino
    • 3
  • G. Pérez
    • 4
  1. 1.Centro de Investigación OperativaUniversidad Miguel HernándezElche (Alicante)Spain
  2. 2.Dpto. de Economía Aplicada IIIUniversidad del País VascoBilbao (Vizcaya)Spain
  3. 3.Dpto. de Matemática Aplicada, Estadística e Investigación OperativaUniversidad del País VascoBilbao (Vizcaya)Spain
  4. 4.Dpto. de Matemática Aplicada, Estadística e Investigación OperativaUniversidad del País VascoLeioa (Vizcaya)Spain

Personalised recommendations