A Tutorial on the Cross-Entropy Method


The cross-entropy (CE) method is a new generic approach to combinatorial and multi-extremal optimization and rare event simulation. The purpose of this tutorial is to give a gentle introduction to the CE method. We present the CE methodology, the basic algorithm and its modifications, and discuss applications in combinatorial optimization and machine learning.

This is a preview of subscription content, access via your institution.


  1. Aarts, E.H.L. and J.H.M Korst. (1989). Simulated Annealing and Boltzmann Machines. John Wiley & Sons.

  2. Alon, G., D.P. Kroese, T. Raviv, and R.Y. Rubinstein. (2005). “Application of the Cross-Entropy Method to the Buffer Allocation Problem in a Simulation-Based Environment.” Annals of Operations Research 134, 19–67.

    Article  Google Scholar 

  3. Asmussen, S., D.P. Kroese, and R.Y. Rubinstein. (2005). “Heavy Tails, Importance Sampling and Cross-Entropy.” Stochastic Models 21(1). To appear.

  4. Barto, A., R. Sutton, and C. Anderson. (1983). “Neuron-Like Adaptive Elements that can Solve Difficult Learning Control Problems.” IEEE Transactions on Systems, Man, and Cybernetics 13, 834–846.

    Google Scholar 

  5. Barto, A.G. and R.S. Sutton. (1998). Reinforcement Learning. MIT Press.

  6. Baxter, J., P.L. Bartlett, and L. Weaver. (2001). Experiments with Infinite-Horizon, Policy-Gradient Estimation.” Journal of Artificial Intelligence Research 15, 351–381.

    Google Scholar 

  7. Bertsekas, D.P. (1995). Dynamic Programming and Optimal Control. Athena Scientific.

  8. Bertsekas, D.P. and J.N. Tsitsiklis. (1995). Neuro-Dynamic Programming. Athena Scientific.

  9. Chepuri, K. and T. Homem-de-Mello. (2005). “Solving the Vehicle Routing Problem with Stochastic Demands using the Cross-Entropy Method.” Annals of Operations Research 134, 153–181.

    Article  Google Scholar 

  10. Cohen, I., B. Golany, and A. Shtub. (2005). “Managing Stochastic Finite Capacity Multi-Project Systems Through the Cross-Entropy Method.” Annals of Operations Research 134, 183–199.

    Article  Google Scholar 

  11. Colorni, A., M. Dorigo, F. Maffioli, V. Maniezzo, G. Righini, and M. Trubian. (1996). “Heuristics from Nature for Hard Combinatorial Problems.” International Transactions in Operational Research 3(1), 1—21.

    Article  Google Scholar 

  12. Dayan, P. and C. Watkins (1992). “Q-Learning.” Machine Learning 8, 279–292.

    Google Scholar 

  13. de Boer, P.T. (2000). “Analysis and Efficient Simulation of Queueing Models of Telecommunication Systems.” Ph.D. thesis, University of Twente.

  14. de Boer, P.T., D.P. Kroese, and R.Y. Rubinstein. (2002).“Estimating Buffer Overflows in Three Stages using Cross-Entropy.” In Proceedings of the 2002 Winter Simulation Conference. San Diego, pp. 301–309.

  15. de Boer, P.T., D.P. Kroese, and R.Y. Rubinstein. (2004). “A Fast Cross-Entropy Method for Estimating Buffer Overflows in Queueing Networks.” Management Science 50(7), 883–895.

    Article  Google Scholar 

  16. Dorigo, M., G. Di Caro, and L.M. Gambardella. (1999). “Ant Algorithms for Discrete Optimization.” Artificial Life 5(2), 137–172.

    Article  Google Scholar 

  17. Dubin, U. (2002). “Application of the Cross-Entropy Method to Neural Computation.” Master’s thesis, Technion, Electrical Engineering.

  18. Dubin, U. (2004). “Application of the Cross-Entropy Method for Image Segmentation.”Unpublished.

  19. Garey, M.R. and D.S. Johnson. (1979). Computers and Intractability: A Guide to the Theory of NP-Completeness. San Francisco: W.H. Freeman and Company.

    Google Scholar 

  20. Glover, F. and M. Laguna. (1993). Modern Heuristic Techniques for Combinatorial Optimization, chapter 3: Tabu search. Blackwell Scientific Publications.

  21. Goldberg, D. (1989). Genetic Algorithms in Search, Optimization and Machine Learning. Addison Wesley.

  22. Gutjahr, W.J. (2000). “A Graph-Based Ant System and Its Convergence.” Future Generations Computing 16, 873–888.

    Article  Google Scholar 

  23. Helvik, B.E. and O. Wittner. (2001). “Using the Cross-Entropy Method to Guide/Govern Mobile Agent’s Path Finding in Networks.” In 3rd International Workshop on Mobile Agents for Telecommunication Applications—MATA’01.

  24. Homem-de-Mello, T. and R.Y. Rubinstein. (2002). “Rare Event Estimation for Static Models via Cross-Entropy and Importance Sampling.” (submitted for publication).

  25. Hui, K.-P., N. Bean, M. Kraetzl, and D.P. Kroese. (2005). “The Cross-Entropy Method for Network Reliability Estimation.”Annals of Operations Research 134, 101–118.

    Article  Google Scholar 

  26. Kaelbling, L.P., M. Littman, and A.W. Moore. (1996). “Reinforcement Learning—A Survey.” Journal of Artificial Intelligence Research 4, 237–285.

    Google Scholar 

  27. Keith, J. and D.P. Kroese. (2002). “SABRES: Sequence Alignment By Rare Event Simulation.” In Proceedings of the 2002 Winter Simulation Conference, San Diego, pp. 320–327.

  28. Konda, V.R. and J.N. Tsitsiklis. (2003). “Actor-Critic Algorithms.” SIAM Journal on Control and Optimization 42(4), 1134–1166.

    Google Scholar 

  29. Kroese, D.P. and R.Y. Rubinstein. (2004). “The Transform Likelihood Ratio Method for Rare Event Simulation with Heavy Tails.” Queueing Systems 46, 317–351.

    Article  Google Scholar 

  30. Lieber, D. (1998). “Rare-Events Estimation via Cross-Entropy and Importance Sampling.” Ph.D. thesis, William Davidson Faculty of Industrial Engineering and Management, Technion, Haifa, Israel.

  31. Mannor, S., R.Y. Rubinstein, and Y. Gat. (2003). “The Cross-Entropy Method for Fast Policy Search.” In Proceedings of the Twentieth International Conference on Machine Learning. Morgan Kaufmann, pp. 512–519.

  32. Margolin, L. (2002). “Application of the Cross-Entropy Method to Scheduling Problems.” Master’s thesis, Technion, Industrial Engineering.

  33. Margolin, L. (2004). “The Cross-Entropy Method for the Single Machine Total Weighted Tardiness Problem.” Unpublished.

  34. Margolin, L. (2005).“On the Convergence of the Cross-Entropy Method.” Annals of Operations Research 134, 201–214.

    Article  Google Scholar 

  35. Menache, I., S. Mannor, and N. Shimkin. (2005). “Basis Function Adaption in Temporal Difference Reinforcement Learning.”Annals of Operations Research 134, 215–238.

    Article  Google Scholar 

  36. Papadimitriou, C.H. and M. Yannakakis. (1991). “Optimization, Approximation, and Complexity Classes.”J. Comput. System Sci. 43, 425–440.

    Article  Google Scholar 

  37. Puterman, M. (1994). Markov Decision Processes. Wiley-Interscience.

  38. Ridder, A. (2005). “Importance Sampling Simulations of Markovian Reliability Systems Using Cross-Entropy.”Annals of Operations Research 134, 119–136.

    Article  Google Scholar 

  39. Rosenstein, M.T. and A.G. Barto. (2001). “Robot Weightlifting by Direct Policy Search.” In B. Nebel (ed.). Proceedings of the Seventeenth International Joint Conference on Artificial Intelligence. Morgan Kaufmann, pp. 839–846.

  40. Rubinstein, R.Y. (1997). “Optimization of Computer Simulation Models with Rare Events.”European Journal of Operations Research 99, 89–112.

    Article  Google Scholar 

  41. Rubinstein, R.Y. (1999). “The Simulated Entropy Method for Combinatorial and Continuous Optimization.”Methodology and Computing in Applied Probability 2, 127–190.

    Article  Google Scholar 

  42. Rubinstein, R.Y. (2001). “Combinatorial Optimization, Cross-Entropy, Ants and Rare Events.”In S. Uryasev and P.M. Pardalos (eds.). Stochastic Optimization: Algorithms and Applications. Kluwer, pp. 304–358.

  43. Rubinstein, R.Y. (2002). “Cross-Entropy and Rare-Events for Maximal Cut and Bipartition Problems.”ACM Transactions on Modeling and Computer Simulation, 27–53.

  44. Rubinstein, R.Y. and D.P. Kroese. (2004). The Cross-Entropy Method: A Unified Approach to Combinatorial Optimization, Monte-Carlo Simulation and Machine Learning. Springer-Verlag, New York.

    Google Scholar 

  45. Rubinstein, R.Y. and B. Melamed. (1998). Modern Simulation and Modeling. Wiley series in probability and Statistics.

  46. Rubinstein, R.Y. and A. Shapiro. (1993). Discrete Event Systems: Sensitivity Analysis and Stochastic Optimization via the Score Function Method. Wiley.

  47. Shi, L. and S. Olafsson. (2000). “Nested Partitioning Method for Global Optimization.” Operations Research 48(3), 390–407.

    Article  Google Scholar 

  48. Sutton, R.S., D. McAllester, S. Singh, and Y. Mansour. (2000). “Policy Gradient Methods for Reinforcement Learning with Function Approximation.” In Advances in Neural Information Processing Systems 12. MIT Press, pp. 1057–1063.

  49. Voudouris, C. (2003). “Guided Local Search—An Illustrative Example in Function Optimisation.”BT Technology Journal 16(3), 46–50.

    Article  Google Scholar 

  50. Webb, A. (1999). Statistical Pattern Recognition. Arnold.

Download references

Author information



Corresponding author

Correspondence to Pieter-Tjerk de Boer.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

de Boer, PT., Kroese, D.P., Mannor, S. et al. A Tutorial on the Cross-Entropy Method. Ann Oper Res 134, 19–67 (2005). https://doi.org/10.1007/s10479-005-5724-z

Download citation

Key words

  • cross-entropy method
  • Monte-Carlo simulation
  • randomized optimization
  • machine learning
  • rare events