Skip to main content
Log in

Wavelet series expansion in Hardy spaces with approximate duals

  • Published:
Analysis Mathematica Aims and scope Submit manuscript

Abstract

In this paper, we provide sufficient conditions for the functions \( \psi \) and \( \phi \) to be the approximate duals in the Hardy space \(H^p(\mathbb{R})\) for all \( 0<p\le 1 \). Based on these conditions, we obtain the wavelet series expansion in the Hardy space \(H^p(\mathbb{R})\) with the approximate duals. The important properties of our approach include the following: (i) our results work for any \( 0<p \leq 1 \); (ii) we do not assume that the functions \( \psi \) and \( \phi \) are exact duals; (iii) we provide a tractable bound for the operator norm of the associated wavelet frame operator so that it is possible to check the suitability of the functions \( \psi \) and \( \phi \).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

References

  1. M. Bownik, Anisotropic Hardy spaces and wavelets, Mem. Amer. Math. Soc., 164 (2003).

  2. M. Bownik and K.-P. Ho, Atomic and molecular decompositions of anisotropic Triebel–Lizorkin spaces, Trans. Amer. Math. Soc., 358 (2006), 1469–1510.

  3. H.-Q. Bui and R. S. Laugesen, Frequency-scale frames and the solution of the Mexican hat problem, Constr. Approx., 33 (2011), 163–189.

  4. H.-Q. Bui and R. S. Laugesen, Wavelets in Littlewood–Paley space, and Mexican hat completeness, Appl. Comput. Harmon. Anal., 30 (2011), 204–213.

  5. H.-Q. Bui and R. S. Laugesen, Wavelet frame bijectivity on Lebesgue and Hardy spaces, J. Fourier Anal. Appl., 19 (2013), 376–409.

  6. B. Cassano, L. Cossetti and L. Fanelli, Improved Hardy–Rellich inequalities, arXiv:2106.09804 (2021).

  7. B. Cassano and F. Pizzichillo, Self-adjoint extensions for the Dirac operator with Coulomb-type spherically symmetric potentials, Lett. Math. Phys., 108 (2018), 2635–2667.

  8. O. Christensen and R. S. Laugesen, Approximately dual frames in Hilbert spaces and applications to Gabor frames, Sampling Theory Signal Image Process., 9 (2010), 77–89.

  9. O. Christensen, An Introduction to Frames and Riesz Bases, Appl. Numer. Harmon. Anal., Birkhäuser Boston, Inc. (Boston, MA, 2003).

  10. I. Daubechies, Ten Lectures on Wavelets, CBMS-NSF Regional Conf. Ser. in Appl. Math., vol. 61, SIAM (Philadelphia, PA, 1992).

  11. M. Frazier and B. Jawerth, Decomposition of Besov spaces, Indiana Univ. Math. J., 34 (1985), 777–799.

  12. M. Frazier and B. Jawerth, A discrete transform and decompositions of distribution spaces, J. Funct. Anal., 93 (1990), 34–170.

  13. M. Frazier, B. Jawerth and G. Weiss, Littlewood–Paley Theory and the Study of Function Spaces, CBMS Regional Conf. Ser. in Math., vol. 79, published for the Conference Board of the Mathematical Sciences, Washington, DC, American Mathematical Society (Providence, RI, 1991).

  14. J. García-Cuerva and J. R. de Francia,Weighted norm Inequalities and Related Topics, North-Holland Math. Stud., vol. 116, North-Holland Publishing Co. (Amsterdam, 1985).

  15. J. E. Gilbert, Y.-S. Han, J. A. Hogan, J. D. Lakey, G. Weiss and D. Weiland, Smooth molecular decompositions of functions and singular integral operators, Mem. Amer. Math. Soc., 156 (2002), 74 pp.

  16. L. Grafakos, Classical Fourier Analysis, Grad. Texts in Math., vol. 249, Springer (New York, 2014).

  17. L. Grafakos, Modern Fourier Analysis, Grad. Texts in Math., vol. 250, Springer (New York, 2014).

  18. G. H. Hardy, Note on a theorem of Hilbert, Math. Z., 6 (1920), 314–317.

  19. E. Hernández and G. Weiss, A First Course on Wavelets, Stud. Adv. Math., CRC Press (Boca Raton, FL, 1996).

  20. G. C. Kyriazis, Wavelet coefficients measuring smoothness in \(H^p({\mathbb R^d})\), Appl. Comput. Harmon. Anal., 3 (1996), 100–119.

  21. G. C. Kyriazis, Decomposition systems for function spaces, Studia Math., 2 (2003), 133–169.

  22. J.-K. Lim, Neumann series expansion of the inverse of a frame operator, Commun. Korean Math. Soc., 13 (1998), 791–800.

  23. Y. Meyer, Wavelets and Operators, Cambridge Stud. Adv. Math., vol. 37, Cambridge University Press (Cambridge, 1992)

  24. Y. Meyer and R. Coifman, Wavelets: Calderón–Zygmund and Multilinear Operators, Cambridge Stud. Adv. Math., vol. 48, Cambridge University Press (Cambridge, 1997).

  25. K. A. Morris, Controller Design for Distributed Parameter Systems, Comm. Control Engrg. Ser., Springer (Cham, 2020).

  26. E. M. Stein and T. S. Murphy, Harmonic Analysis: Real-Variable Methods, Orthogonality, and Oscillatory Integrals, Princeton Math. Ser., vol. 43, Monogr. Harmon. Anal., Princeton University Press (Princeton, NJ, 1993).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Y. Hur.

Additional information

This work was supported in part by the National Research Foundation of Korea (NRF) [Grant Numbers 2015R1A5A1009350 and 2021R1A2C1007598].

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hur, Y., Lim, H. Wavelet series expansion in Hardy spaces with approximate duals. Anal Math (2024). https://doi.org/10.1007/s10476-024-00022-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10476-024-00022-z

Key words and phrases

Mathematics Subject Classification

Navigation