Skip to main content
Log in

Peanut Harmonic Expansion for a Fundamental Solution of Laplace’s Equation in Flat-Ring Coordinates

  • Published:
Analysis Mathematica Aims and scope Submit manuscript

Abstract

We derive an expansion for the fundamental solution of Laplace’s equation in flat-ring cyclide coordinates in three-dimensional Euclidean space. This expansion is a double series of products of functions that are harmonic in the interior and exterior of coordinate surfaces which are peanut shaped and orthogonal to surfaces which are flat-rings. These internal and external peanut harmonic functions are expressed in terms of Lamé—Wangerin functions. Using the expansion for the fundamental solution, we derive an addition theorem for the azimuthal Fourier component in terms of the odd-half-integer degree Legendre function of the second kind as an infinite series in Lamé—Wangerin functions. We also derive integral identities over the Legendre function of the second kind for a product of three Lamé—Wangerin functions. In a limiting case we obtain the expansion of the fundamental solution in spherical coordinates.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. L. Bi, H. S. Cohl, and H. Volkmer, Expansion for a fundamental solution of Laplace’s equation in flat-ring cyclide coordinates, SIGMA Symmetry Integrability Geom. Methods Appl., 18 (2022), Paper No. 041, 31 pp.

  2. M. Bôcher, Über die Reihenentwickelungen der Potentialtheorie, B. G. Teubner (Leipzig, 1894).

    MATH  Google Scholar 

  3. H. S. Cohl, Erratum: “Developments in determining the gravitational potential using toroidal functions”, Astron. Nachr., 333 (2012), 784–785.

    Article  Google Scholar 

  4. H. S. Cohl and J. E. Tohline, A compact cylindrical Green’s function expansion for the solution of potential problems, Astrophys. J., 527 (1999), 86–101.

    Article  Google Scholar 

  5. H. S. Cohl, J. E. Tohline, A. R. P. Rau, and H. M. Srivastava, Developments in determining the gravitational potential using toroidal functions, Astronom. Nachr., 321 (2000), 363–372.

    Article  MATH  Google Scholar 

  6. NIST Digital Library of Mathematical Functions, Release 1.1.6 of 2022-06-30, F. W. J. Olver, A. B. Olde Daalhuis, D. W. Lozier, B. I. Schneider, R. F. Boisvert, C. W. Clark, B. R. Miller, B. V. Saunders, H. S. Cohl, and M. A. McClain, eds., http://dlmf.nist.gov.

  7. A. Erdélyi, W. Magnus, F. Oberhettinger, and F. G. Tricomi, Higher Transcendental Functions. III, Robert E. Krieger Publishing Co. Inc. (Melbourne, Fla, 1981).

    MATH  Google Scholar 

  8. E. L. Ince, Ordinary Differential Equations, Dover Publications (New York, 1944).

    MATH  Google Scholar 

  9. O. D. Kellogg, Foundations of Potential Theory, Reprint from the first edition of 1929. Die Grundlehren der Mathematischen Wissenschaften, Band 31, Springer-Verlag (Berlin, 1967).

    Book  MATH  Google Scholar 

  10. W. Miller, Jr, Symmetry and Separation of Variables, Encyclopedia of Mathematics and its Applications, Vol. 4, Addison-Wesley Publishing Co. (Reading, Mass.-London-Amsterdam, 1977), with a foreword by Richard Askey.

    Google Scholar 

  11. P. M. Morse and H. Feshbach, Methods of Theoretical Physics, 2 volumes, McGraw-Hill Book Co., Inc. (New York, 1953).

    MATH  Google Scholar 

  12. G. Szegő, Orthogonal Polynomials, AMS Colloquium Publications, Vol. 23, revised ed., American Mathematical Society (Providence, RI, 1959).

    MATH  Google Scholar 

  13. H. Volkmer, Integral representations for products of Lamé functions by use of fundamental solutions, SIAM J. Math. Anal., 15 (1984), 559–569.

    Article  MathSciNet  MATH  Google Scholar 

  14. H. Volkmer, Eigenvalue problems for Lamé’s differential equation, SIGMA Symmetry Integrability Geom. Methods Appl., 14 (2018), Paper No. 131, 21 pp.

    MATH  Google Scholar 

  15. A. Wangerin, Reduction der Potentialgleichung für gewisse Rotationskörper auf eine gewöhnliche Differentialgleichung, Preisschr. der Jabl. Ges. Hirzel (Leipzig, 1875).

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. S. Cohl.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bi, L., Cohl, H.S. & Volkmer, H. Peanut Harmonic Expansion for a Fundamental Solution of Laplace’s Equation in Flat-Ring Coordinates. Anal Math 48, 961–989 (2022). https://doi.org/10.1007/s10476-022-0175-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10476-022-0175-1

Key words and phrases

Mathematics Subject Classification

Navigation