Abstract
We study continuity properties for commutators of Calderón-Zygmund and fractional integral operators between generalized Zygmund spaces of L log L type, in the variable exponent setting with different weights. In order to reach this goal we use two different approaches: the first one is related to generalized bump conditions on a pair of weights, allowing us to handle with a wide class of symbol involved with the commutator. The other approaches give Bloom type estimates restricting the class of symbols. The techniques involved in both type of results are related with the theory of sparse domination.
Similar content being viewed by others
References
N. Accomazzo, J. C. Martínez-Perales, and I. P. Rivera-Ríos, On Bloom type estimates for iterated commutators of fractional integrals, arXiv:1712.06923 (2017).
S. Bloom, A commutator theorem and weighted BMO, Trans. Amer. Math. Soc., 292 (1985), 103–122.
D. Cruz-Uribe, Two weight norm inequalities for fractional integral operators and commutators, arXiv:1412.4157 (2014).
D. Cruz-Uribe, L. Diening, and P. Hästö, The maximal operator on weighted variable Lebesgue spaces, Fract. Calc. Appl. Anal., 14 (2011), 361–374.
D. Cruz-Uribe and A. Fiorenza, Variable Lebesgue Spaces, Applied and Numerical Harmonic Analysis, Birkhäuser/Springer (Heidelberg, 2013).
D. Cruz-Uribe, J. M. Martell, and C. Pérez, Sharp two-weight inequalities for singular integrals, with applications to the Hilbert transform and the Sarason conjecture, Adv. Math., 216 (2007), 647–676.
D. Cruz-Uribe, J. M. Martell, and C. Pérez, Weights, extrapolation and the theory of Rubio de Francia, Operator Theory: Advances and Applications, vol. 215, Birkhäuser/Springer Basel AG (Basel, 2011).
D. Cruz-Uribe, J. M. Martell, and C. Pérez, Sharp weighted estimates for classical operators, Adv. Math., 229 (2012), 408–441.
D. Cruz-Uribe and C. Pérez, On the two-weight problem for singular integral operators, Ann. Sc. Norm. Super. Pisa Cl. Sci. (5), 1 (2002), 821–849.
D. Cruz-Uribe, A. Reznikov, and A. Volberg, Logarithmic bump conditions and the two-weight boundedness of Calderón-Zygmund operators, Adv. Math., 255 (2014), 706–729.
L. Diening, P. Harjulehto, P. Hästö, and M. Ruzicka, Lebesgue and Sobolev Spaces with Variable Exponents, Lecture Notes in Mathematics, vol. 2017, Springer (Heidelberg, 2011).
X. T. Duong, R. Gong, M.-J. S. Kuffner, J. Li, B. D. Wick, and D. Yang, Two weight commutators on spaces of homogeneous type and applications, J. Geom. Anal. (to appear), arXiv:1809.07942.
E. Harboure, O. Salinas, and B. Viviani, Boundedness of the fractional integral on weighted Lebesgue and Lipschitz spaces, Trans. Amer. Math. Soc., 349 (1997), 235–255.
P. Harjulehto and P. Hästö, Orlicz Spaces and Generalized Orlicz Spaces, Lecture Notes in Mathematics, vol. 2236, Springer (Cham, 2019).
I. Holmes, M. T. Lacey, and B. D. Wick, Commutators in the two-weight setting, Math. Ann., 367 (2017), 51–80.
I. Holmes, R. Rahm, and S. Spencer, Two-weight inequalities for commutators with fractional integral operators, Studia Math., 233 (2016), 279–291.
G. H. Ibañez-Firnkorn and I. P. Rivera-Ríos, Sparse and weighted estimates for generalized Hörmander operators and commutators, Monatsh. Math., 191 (2020), 125–173.
A. K. Lerner, On an estimate of Calderón-Zygmund operators by dyadic positive operators, J. Anal. Math., 121 (2013), 141–161.
A. K. Lerner and F. Nazarov, Intuitive dyadic calculus: the basics, preprint (2014).
A. K. Lerner, S. Ombrosi, and I. P. Rivera-Ríos, On pointwise and weighted estimates for commutators of Calderón-Zygmund operators, Adv. Math., 319 (2017), 153–181.
A. K. Lerner, S. Ombrosi, and I. P. Rivera-Ríos, Commutators of singular integrals revisited, Bull. Lond. Math. Soc., 51 (2019), 107–119.
F.-Y. Maeda, Y. Mizuta, and T. Ohno, Approximate identities and Young type inequalities in variable Lebesgue-Orlicz spaces Lp(·)(log L)q(·), Ann. Acad. Sci. Fenn. Math., 35 (2010), 405–420.
L. Melchiori and G. Pradolini, Potential operators and their commutators acting between variable Lebesgue spaces with different weights, Integral Transforms Spec. Funct., 29 (2018), 909–926.
L. Melchiori, G. Pradolini, and W. Ramos, Commutators of potential type operators with Lipschitz symbols on variable Lebesgue spaces with different weights, Math. Inequal. Appl., 22 (2019), 855–883.
B. Muckenhoupt and R. Wheeden, Weighted norm inequalities for fractional integrals, Trans. Amer. Math. Soc., 192 (1974), 261–274.
C. Pérez, Two weighted inequalities for potential and fractional type maximal operators, Indiana Univ. Math. J., 43 (1994),:663–683.
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Melchiori, L., Pradolini, G. & Ramos, W. Musielak-Orlicz-Bumps and Bloom Type Estimates for Commutators of Calderón-Zygmund and Fractional Integral Operators on Generalized Zygmund Spaces Via Sparse Operators. Anal Math 47, 357–383 (2021). https://doi.org/10.1007/s10476-021-0075-9
Received:
Revised:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10476-021-0075-9
