Skip to main content
Log in

Musielak-Orlicz-Bumps and Bloom Type Estimates for Commutators of Calderón-Zygmund and Fractional Integral Operators on Generalized Zygmund Spaces Via Sparse Operators

  • Published:
Analysis Mathematica Aims and scope Submit manuscript

Abstract

We study continuity properties for commutators of Calderón-Zygmund and fractional integral operators between generalized Zygmund spaces of L log L type, in the variable exponent setting with different weights. In order to reach this goal we use two different approaches: the first one is related to generalized bump conditions on a pair of weights, allowing us to handle with a wide class of symbol involved with the commutator. The other approaches give Bloom type estimates restricting the class of symbols. The techniques involved in both type of results are related with the theory of sparse domination.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price includes VAT (Finland)

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. N. Accomazzo, J. C. Martínez-Perales, and I. P. Rivera-Ríos, On Bloom type estimates for iterated commutators of fractional integrals, arXiv:1712.06923 (2017).

  2. S. Bloom, A commutator theorem and weighted BMO, Trans. Amer. Math. Soc., 292 (1985), 103–122.

    Article  MathSciNet  Google Scholar 

  3. D. Cruz-Uribe, Two weight norm inequalities for fractional integral operators and commutators, arXiv:1412.4157 (2014).

  4. D. Cruz-Uribe, L. Diening, and P. Hästö, The maximal operator on weighted variable Lebesgue spaces, Fract. Calc. Appl. Anal., 14 (2011), 361–374.

    Article  MathSciNet  Google Scholar 

  5. D. Cruz-Uribe and A. Fiorenza, Variable Lebesgue Spaces, Applied and Numerical Harmonic Analysis, Birkhäuser/Springer (Heidelberg, 2013).

    Book  Google Scholar 

  6. D. Cruz-Uribe, J. M. Martell, and C. Pérez, Sharp two-weight inequalities for singular integrals, with applications to the Hilbert transform and the Sarason conjecture, Adv. Math., 216 (2007), 647–676.

    Article  MathSciNet  Google Scholar 

  7. D. Cruz-Uribe, J. M. Martell, and C. Pérez, Weights, extrapolation and the theory of Rubio de Francia, Operator Theory: Advances and Applications, vol. 215, Birkhäuser/Springer Basel AG (Basel, 2011).

    Book  Google Scholar 

  8. D. Cruz-Uribe, J. M. Martell, and C. Pérez, Sharp weighted estimates for classical operators, Adv. Math., 229 (2012), 408–441.

    Article  MathSciNet  Google Scholar 

  9. D. Cruz-Uribe and C. Pérez, On the two-weight problem for singular integral operators, Ann. Sc. Norm. Super. Pisa Cl. Sci. (5), 1 (2002), 821–849.

    MathSciNet  MATH  Google Scholar 

  10. D. Cruz-Uribe, A. Reznikov, and A. Volberg, Logarithmic bump conditions and the two-weight boundedness of Calderón-Zygmund operators, Adv. Math., 255 (2014), 706–729.

    Article  MathSciNet  Google Scholar 

  11. L. Diening, P. Harjulehto, P. Hästö, and M. Ruzicka, Lebesgue and Sobolev Spaces with Variable Exponents, Lecture Notes in Mathematics, vol. 2017, Springer (Heidelberg, 2011).

    Book  Google Scholar 

  12. X. T. Duong, R. Gong, M.-J. S. Kuffner, J. Li, B. D. Wick, and D. Yang, Two weight commutators on spaces of homogeneous type and applications, J. Geom. Anal. (to appear), arXiv:1809.07942.

  13. E. Harboure, O. Salinas, and B. Viviani, Boundedness of the fractional integral on weighted Lebesgue and Lipschitz spaces, Trans. Amer. Math. Soc., 349 (1997), 235–255.

    Article  MathSciNet  Google Scholar 

  14. P. Harjulehto and P. Hästö, Orlicz Spaces and Generalized Orlicz Spaces, Lecture Notes in Mathematics, vol. 2236, Springer (Cham, 2019).

    Book  Google Scholar 

  15. I. Holmes, M. T. Lacey, and B. D. Wick, Commutators in the two-weight setting, Math. Ann., 367 (2017), 51–80.

    Article  MathSciNet  Google Scholar 

  16. I. Holmes, R. Rahm, and S. Spencer, Two-weight inequalities for commutators with fractional integral operators, Studia Math., 233 (2016), 279–291.

    MathSciNet  MATH  Google Scholar 

  17. G. H. Ibañez-Firnkorn and I. P. Rivera-Ríos, Sparse and weighted estimates for generalized Hörmander operators and commutators, Monatsh. Math., 191 (2020), 125–173.

    Article  MathSciNet  Google Scholar 

  18. A. K. Lerner, On an estimate of Calderón-Zygmund operators by dyadic positive operators, J. Anal. Math., 121 (2013), 141–161.

    Article  MathSciNet  Google Scholar 

  19. A. K. Lerner and F. Nazarov, Intuitive dyadic calculus: the basics, preprint (2014).

  20. A. K. Lerner, S. Ombrosi, and I. P. Rivera-Ríos, On pointwise and weighted estimates for commutators of Calderón-Zygmund operators, Adv. Math., 319 (2017), 153–181.

    Article  MathSciNet  Google Scholar 

  21. A. K. Lerner, S. Ombrosi, and I. P. Rivera-Ríos, Commutators of singular integrals revisited, Bull. Lond. Math. Soc., 51 (2019), 107–119.

    Article  MathSciNet  Google Scholar 

  22. F.-Y. Maeda, Y. Mizuta, and T. Ohno, Approximate identities and Young type inequalities in variable Lebesgue-Orlicz spaces Lp(·)(log L)q(·), Ann. Acad. Sci. Fenn. Math., 35 (2010), 405–420.

    Article  MathSciNet  Google Scholar 

  23. L. Melchiori and G. Pradolini, Potential operators and their commutators acting between variable Lebesgue spaces with different weights, Integral Transforms Spec. Funct., 29 (2018), 909–926.

    Article  MathSciNet  Google Scholar 

  24. L. Melchiori, G. Pradolini, and W. Ramos, Commutators of potential type operators with Lipschitz symbols on variable Lebesgue spaces with different weights, Math. Inequal. Appl., 22 (2019), 855–883.

    MathSciNet  MATH  Google Scholar 

  25. B. Muckenhoupt and R. Wheeden, Weighted norm inequalities for fractional integrals, Trans. Amer. Math. Soc., 192 (1974), 261–274.

    Article  MathSciNet  Google Scholar 

  26. C. Pérez, Two weighted inequalities for potential and fractional type maximal operators, Indiana Univ. Math. J., 43 (1994),:663–683.

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. Melchiori.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Melchiori, L., Pradolini, G. & Ramos, W. Musielak-Orlicz-Bumps and Bloom Type Estimates for Commutators of Calderón-Zygmund and Fractional Integral Operators on Generalized Zygmund Spaces Via Sparse Operators. Anal Math 47, 357–383 (2021). https://doi.org/10.1007/s10476-021-0075-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10476-021-0075-9

Key words and phrases

Mathematics Subject Classification

Navigation