Skip to main content
Log in

Negligible Sets in Infinite-Dimensional Spaces

  • Published:
Analysis Mathematica Aims and scope Submit manuscript

Abstract

The paper gives a survey on various concepts of negligible sets in infinite-dimensional linear spaces, in particular, related to the research of Jean- Pierre Kahane. Some open problems are also mentioned.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. L. Ambrosio and E. Durand-Cartagena, Metric differentiability of Lipschitz maps defined on Wiener spaces, Rend. Circ. Mat. Palermo (2), 58 (2009), 1–10.

    Article  MathSciNet  MATH  Google Scholar 

  2. R. Anderson and W. Zame, Genericity with infinitely many parameters, Adv. Theor. Econ., 1 (2001), 1–65.

    Article  MathSciNet  Google Scholar 

  3. A. Araujo, Regular economies and sets of measure zero in Banach spaces, J. Math. Econom., 14 (1985), 61–66.

    Article  MathSciNet  MATH  Google Scholar 

  4. N. Aronszajn, Differentiability of Lipchitzian mappings between Banach spaces, Studia Math., 57 (1976), 147–190.

    Article  MathSciNet  MATH  Google Scholar 

  5. J.-M. Aubry, D. Maman and S. Seuret, Local behavior of traces of Besov functions: prevalent results, J. Funct. Anal., 264 (2013), 631–660.

    Google Scholar 

  6. V. I. Averbuh, O. G. Smolyanov and S. V. Fomin, Generalized functions and differential equations in linear spaces. I. Differentiable measures, Trudy Moskov. Mat. Obshch., 24 (1971), 133–174 (in Russian); English translation in Trans. Moscow Math. Soc., 24 (1971), 140–184.

    MathSciNet  Google Scholar 

  7. A. Avila, Global theory of one-frequency Schrödinger operators, Acta Math., 215 (2015), 1–54.

    Article  MathSciNet  MATH  Google Scholar 

  8. R. Balka, U. B. Darji and M. Elekes, Bruckner–Garg-type results with respect to Haar null sets in C[0, 1], Proc. Edinb. Math. Soc. (2), 60 (2017), 17–30.

    Google Scholar 

  9. T. Banakh, Cardinal characteristics of the ideal of Haar null sets, Comment. Math. Univ. Carolin., 45 (2004), 119–137.

    MathSciNet  MATH  Google Scholar 

  10. T. Banakh, S. Glab, E. Jablońska and J. Swaczyna, Haar-I sets: looking at small sets in Polish groups through compact glasses, arXiv:1803.06712 (2018).

    Google Scholar 

  11. F. Bastin, C. Esser, S. Nicolay, Prevalence of “nowhere analyticity”, Studia Math., 210 (2012), 239–246.

    Article  MathSciNet  MATH  Google Scholar 

  12. F. Bayart, Multifractal spectra of typical and prevalent measures, Nonlinearity, 26 (2013), 353–367.

    Article  MathSciNet  MATH  Google Scholar 

  13. Y. Benyamini and J. Lindenstrauss, Geometric Nonlinear Functional Analysis, Amer. Math. Soc. (Providence, RI, 2000).

    MATH  Google Scholar 

  14. C. Bessaga and A. Pelczyński, On bases and unconditional convergence of series in Banach spaces, Studia Math., 17 (1958), 151–164.

    Article  MathSciNet  MATH  Google Scholar 

  15. N. H. Bingham and A. J. Ostaszewski, Category-measure duality: convexity, midpoint convexity and Berz sublinearity, Aequationes Math., 91 (2017), 801–836.

    Article  MATH  Google Scholar 

  16. V. I. Bogachev, Negligible sets and differentiable measures in Banach spaces, Vestnik Moskov. Univ. Ser. I Mat. Mekh., 3 (1982), 47–52 (in Russian); English translation in Moscow Univ. Math. Bull., 37 (1982), 54–59.

    MathSciNet  MATH  Google Scholar 

  17. V. I. Bogachev, Three problems of Aronszajn from measure theory, Funktsional Anal. i Prilozhen., 18 (1984), 75–76 (in Russian); English translation in Funct. Anal. Appl., 18 (1984), 242–244.

    Article  MathSciNet  Google Scholar 

  18. V. I. Bogachev, Negligible sets in locally convex spaces, Matem. Zametki, 36 (1984), 51–64 (in Russian); English translation in Math. Notes, 36 (1984), 519–526.

    MathSciNet  MATH  Google Scholar 

  19. V. I. Bogachev, Some results on differentiable measures, Mat. Sb., 127 (1985), 336–351 (in Russian); English translation in Math. USSR–Sb., 55 (1986), 335–349.

    MathSciNet  MATH  Google Scholar 

  20. V. I. Bogachev, Gaussian Measures, Amer. Math. Soc. (Providence, RI, 1998).

    Book  MATH  Google Scholar 

  21. V. I. Bogachev, Measure Theory, vols. 1, 2, Springer (New York, 2007).

    Book  MATH  Google Scholar 

  22. V. I. Bogachev, Differentiable Measures and the Malliavin Calculus, Amer.Math. Soc. (Providence, RI, 2010).

    Book  MATH  Google Scholar 

  23. V. I. Bogachev, E. Priola and N. A. Tolmachev, On Fréchet differentiability of Lipschitzian functions on spaces with Gaussian measures, Dokl. Akad. Nauk, 414 (2007), 151–155 (in Russian); English translation in Dokl. Math., 75 (2007), 353–357.

    Google Scholar 

  24. V. I. Bogachev and O. G. Smolyanov, Analytic properties of infinite dimensional distributions, Usp. Mat. Nauk, 45 (1990), 3–83 (in Russian); English translation in Russian Math. Surveys, 45 (1990), 1–104.

    MathSciNet  MATH  Google Scholar 

  25. V. I. Bogachev and O. G. Smolyanov, Topological Vector Spaces and their Applications, Springer (Cham, 2017).

    Book  MATH  Google Scholar 

  26. D. Bongiorno, Stepanoff’s theorem in separable Banach spaces, Comment. Math. Univ. Carolin., 39 (1998), 323–335.

    MathSciNet  MATH  Google Scholar 

  27. D. Bongiorno, Metric differentiability of Lipschitz maps, J. Aust. Math. Soc., 96 (2014), 25–35.

    Article  MathSciNet  MATH  Google Scholar 

  28. D. Bongiorno, Rademacher’s theorem in Banach spaces without RNP, Math. Slovaca, 67 (2017), 1345–1358.

    Article  MathSciNet  MATH  Google Scholar 

  29. J. M. Borwein and D. Noll, Second order differentiability of convex functions in Banach spaces, Trans. Amer. Math. Soc., 342 (1994), 43–81.

    Article  MathSciNet  MATH  Google Scholar 

  30. J. M. Borwein and Q. J. Zhu, Multifunctional and functional analytic techniques in nonsmooth analysis, in: Nonlinear Analysis, Differential Equations and Control (Montreal, 1998), Kluwer Acad. Publ. (Dordrecht, 1999), pp. 61–157.

    MATH  Google Scholar 

  31. R. H. Cameron and W.T. Martin, The behaviour of measure and measurability under change of scale in Wiener space, Bull. Amer. Math. Soc., 53 (1947), 130–137.

    Article  MathSciNet  MATH  Google Scholar 

  32. J. Cheeger, Differentiability of Lipschitz functions on metric measure spaces, Geom. Funct. Anal., 9 (1999), 428–517.

    Article  MathSciNet  MATH  Google Scholar 

  33. J. Cheeger, Quantitative differentiation: a general formulation, Comm. Pure Appl. Math., 65 (2012), 1641–1670.

    Article  MathSciNet  MATH  Google Scholar 

  34. S. A. Chobanjan and V. I. Tarieladze, Gaussian characterizations of certain Banach spaces, J. Multivariate Anal., 7 (1977), 183–203.

    Article  MathSciNet  MATH  Google Scholar 

  35. J. P. R. Christensen, On sets of Haar measure zero in abelian Polish groups, Israel J. Math., 13 (1972), 255–260.

    Article  MathSciNet  Google Scholar 

  36. J. P. R. Christensen, Measure theoretic zero sets in infinite dimensional spaces and applications to differentiability of Lipschitz mappings. II, Actes du Deuxiéme Colloque d’Analyse Fonctionnelle de Bordeaux (Univ. Bordeaux, 1973), I, pp. 29–39, Publ. Dép. Math. Lyon 10 (1973), 29–39.

    Google Scholar 

  37. J. P. R. Christensen, Topology and Borel Structure, North-Holland (Amsterdam, London), Amer. Elsevier (New York, 1974).

    Google Scholar 

  38. M. Csörnyei, Aronszajn null and Gaussian null sets coincide, Israel J. Math., 111 (1999), 191–201.

    Article  MathSciNet  MATH  Google Scholar 

  39. U. B. Darji and S. C. White, Haar ambivalent sets in the space of continuous functions, Acta Math. Hungar., 126 (2010), 230–240.

    Article  MathSciNet  MATH  Google Scholar 

  40. P. Dodos, Dichotomies of the set of test measures of a Haar-null set, Israel J. Math., 144 (2004), 15–28.

    Article  MathSciNet  MATH  Google Scholar 

  41. P. Dodos, On certain regularity properties of Haar-null sets, Fund. Math., 181 (2004), 97–109.

    Article  MathSciNet  MATH  Google Scholar 

  42. P. Dodos, The Steinhaus property and Haar-null sets, Bull. Lond. Math. Soc., 41 (2009), 377–384.

    Article  MathSciNet  MATH  Google Scholar 

  43. R. Dougherty, Examples of nonshy sets, Fund. Math., 144 (1994), 73–88.

    Article  MathSciNet  MATH  Google Scholar 

  44. J. Duda, Metric and w * -differentiability of pointwise Lipschitz mappings, Z. Anal. Anwend., 26 (2007), 341–362.

    Article  MathSciNet  MATH  Google Scholar 

  45. J. Duda and B. Tsaban, Null sets and games in Banach spaces, Topology Appl., 156 (2008), 56–60.

    Article  MathSciNet  MATH  Google Scholar 

  46. M. Elekes and D. Nagy, Haar null and Haar meager sets: a survey and new results, arXiv 1606.06607v2.

  47. M. Elekes and J. Steprans, Haar null sets and the consistent reflection of nonmeagreness, Canad. J. Math., 66 (2014), 303–322.

    Article  MathSciNet  MATH  Google Scholar 

  48. M. Elekes and Z. Vidnyánszky, Naively Haar null sets in Polish groups, J. Math. Anal. Appl., 446 (2017), 193–200.

    Article  MathSciNet  MATH  Google Scholar 

  49. O. Enchev and D. Stroock, On Rademacher’s theorem on Wiener space, Ann. Probab., 21 (1993), 25–33.

    Article  MathSciNet  MATH  Google Scholar 

  50. J. Esterle, É. Matheron and P. Moreau, Haar negligibility of positive cones in Banach spaces, Algebra i Analiz , 27 (2015), 32–68 (in Russian); English translation in St. Petersburg Math. J., 27 (2016), 731–756.

    Google Scholar 

  51. M. Fabian, P. Habala, P. Hájek, V. Montesinos and V. Zizler, Banach Space Theory. The Basis for Linear and Nonlinear Analysis, Springer (New York, 2011).

    MATH  Google Scholar 

  52. D. Feyel and A. S. Üstünel, The notion of convexity and concavity on Wiener space, J. Funct. Anal., 176 (2000), 400–428.

    Article  MathSciNet  MATH  Google Scholar 

  53. S. V. Fomin, Differentiable measures in linear spaces, in: Proc. Internat. Congress of Mathematicians, Izdat. Moskov. Univ. (Moscow, 1966), sec. 5, pp. 78–79 (in Russian).

    Google Scholar 

  54. J. M. Fraser and J. T. Hyde, The Hausdorff dimension of graphs of prevalent continuous functions, Real Anal. Exchange, 37 (2011/12), 333–351.

    MATH  Google Scholar 

  55. A. Fraysse and S. Jaffard, How smooth is almost every function in a Sobolev space?, Rev. Mat. Iberoam., 22 (2006), 663–682.

    Article  MathSciNet  MATH  Google Scholar 

  56. A. Fraysse, S. Jaffard and J.-P. Kahane, Notions de quelques propriétés génériques d’analyse, C. R. Acad. Sci. Paris, Sér. I , 340 (2005), 645—651.

    Google Scholar 

  57. A. Gorodetski, B. Hunt and V. Kaloshin, Newton interpolation polynomials, discretization method, and certain prevalent properties in dynamical systems, Proc. ICM, Madrid (Spain, 2006), Eur. Math. Soc. (2006), vol. 2, pp. 27–55.

    MATH  Google Scholar 

  58. B. Hunt, The prevalence of continuous nowhere differentiable functions, Proc. Amer. Math. Soc., 122 (1994), 711–717.

    Article  MathSciNet  MATH  Google Scholar 

  59. B.R. Hunt, T. Sauer and J. A. Yorke, Prevalence: a translation-invariant “almosteverywhere” on infinite-dimensional spaces, Bull. Amer. Math. Soc., 27 (1992), 217–238; addendum: ibid., 28 (1993), 306–307.

    Google Scholar 

  60. G. W. Johnson and D. L. Skoug, Scale-invariant measurability in Wiener space, Pacific J. Math., 83, (1979), 157–176.

    MATH  Google Scholar 

  61. R. Joly, Adaptation of the generic PDE’s results to the notion of prevalence, J. Dynam. Differ. Equ., 19 (2007), 967–983.

    Article  MathSciNet  MATH  Google Scholar 

  62. J.-P. Kahane, Propriétés prévalentes, versus génériques, des images continues, Bull. Sci. Math., 130 (2006), 97–109.

    MATH  Google Scholar 

  63. J.-P. Kahane and Y. Katznelson, Entiers aléatoires et analyse harmonique, J. Anal. Math., 105 (2008), 363–378.

    Article  MathSciNet  MATH  Google Scholar 

  64. V. Yu. Kaloshin, Some prevalent properties of smooth dynamical systems, Proc. Steklov Inst. Math., 213 (1996), 115–140.

    MathSciNet  MATH  Google Scholar 

  65. V. Yu. Kaloshin and B. R. Hunt, Stretched exponential estimates on growth of the number of periodic points for prevalent diffeomorphisms. I, Ann. Math. (2), 165 (2007), 89–170.

    Article  MathSciNet  MATH  Google Scholar 

  66. N. J. Kalton, The nonlinear geometry of Banach spaces, Rev. Mat. Complut., 21 (2008), 7–60.

    Article  MathSciNet  MATH  Google Scholar 

  67. J. Koláˇr, Porous sets that are Haar null, and nowhere approximately differentiable functions, Proc. Amer. Math. Soc., 129 (2001), 1403–1408.

    Article  MathSciNet  Google Scholar 

  68. J. Lin and W. Ott, Observing infinite-dimensional dynamical systems, SIAM J. Appl. Dyn. Syst., 9 (2010), 1229–1243.

    Article  MathSciNet  MATH  Google Scholar 

  69. J. Lindenstrauss, E. Matoušková and D. Preiss, Lipschitz image of a measure-null set can have a null complement, Israel J. Math., 118 (2000), 207–219.

    Google Scholar 

  70. J. Lindenstrauss and D. Preiss, On Fréchet differentiability of Lipschitz maps between Banach spaces, Ann. Math. (2), 157 (2003), 257–288.

    Article  MathSciNet  MATH  Google Scholar 

  71. J. Lindenstrauss, D. Preiss and J. Tišer, Fréchet differentiability of Lipschitz functions and porous sets in Banach spaces, Ann. of Math. Stud., 179, Princeton Univ. Press (Princeton, NJ, 2012).

    MATH  Google Scholar 

  72. P. Mankiewicz, On the differentiability of Lipschitz mappings in Fréchet spaces, Studia Math., 45 (1973), 15–29.

    Article  MathSciNet  MATH  Google Scholar 

  73. J. Matoušek and E. Matoušková, A highly non-smooth norm on Hilbert space, Israel J. Math., 112 (1999), 1–27.

    Article  MathSciNet  MATH  Google Scholar 

  74. E. Matoušková, Convexity and Haar null sets, Proc. Amer. Math. Soc., 125 (1997), 1793–1799.

    Article  MathSciNet  MATH  Google Scholar 

  75. E. Matoušková, The Banach–Saks property and Haar null sets, Comment. Math. Univ. Carolin., 39 (1998), 71–80.

    MathSciNet  MATH  Google Scholar 

  76. E. Matoušková, An almost nowhere Fréchet smooth norm on superreflexive spaces, Studia Math., 133 (1999), 93–99.

    Article  MathSciNet  MATH  Google Scholar 

  77. E. Matoušková, Lipschitz images of Haar null sets, Bull. London Math. Soc., 32 (2000), 235–244.

    Article  MathSciNet  MATH  Google Scholar 

  78. E. Matoušková, Translating finite sets into convex sets, Bull. London Math. Soc., 33 (2001), 711–714.

    Article  MathSciNet  MATH  Google Scholar 

  79. E. Matoušková and C. Stegall, A characterization of reflexive Banach spaces, Proc. Amer. Math. Soc., 124 (1996), 1083–1090.

    Article  MathSciNet  MATH  Google Scholar 

  80. L. Mazliak, The ghosts of the École Normale. Life, death and destiny of René Gateaux, Statist. Sci., 30 (2015), 391–412.

    MATH  Google Scholar 

  81. L. Olsen, Fractal and multifractal dimensions of prevalent measures, Indiana Univ. Math. J., 59 (2010), 661–690.

    Article  MathSciNet  MATH  Google Scholar 

  82. W. Ott and J. A. Yorke, Prevalence, Bull. Amer. Math. Soc., 42 (2005), 263–290.

    Article  MathSciNet  MATH  Google Scholar 

  83. R. R. Phelps, Gaussian null sets and differentiability of Lipschitz map on Banach spaces, Pacif. J. Math., 77 (1978), 523–531.

    Article  MathSciNet  MATH  Google Scholar 

  84. G. Pisier, Quotients of Banach spaces of cotype q, Proc. Amer. Math. Soc., 85 (1982), 32–36.

    MathSciNet  MATH  Google Scholar 

  85. D. Preiss, Differentiability of Lipschitz functions on Banach spaces, J. Funct. Anal., 91 (1990), 312–345.

    Article  MathSciNet  MATH  Google Scholar 

  86. D. Preiss and L. Zajíček, Directional derivatives of Lipschitz functions, Israel J. Math., 125 (2001), 1–27.

    Article  MathSciNet  MATH  Google Scholar 

  87. P. J. Rabier, Differentiability of quasiconvex functions on separable Banach spaces, Israel J. Math., 207 (2015), 11–51.

    Article  MathSciNet  MATH  Google Scholar 

  88. J. C. Robinson, Linear embeddings of finite-dimensional subsets of Banach spaces into Euclidean spaces, Nonlinearity, 22 (2009), 711–728.

    Article  MathSciNet  MATH  Google Scholar 

  89. S. Solecki, On Haar null sets, Fund. Math., 149 (1996), 205–210.

    MathSciNet  MATH  Google Scholar 

  90. M. Talagrand, Comparaison des boreliens d’un espace de Banach pour les topologies fortes et faibles, Indiana Univ. Math. J., 27 (1978), 1001–1004.

    Article  MathSciNet  MATH  Google Scholar 

  91. J. Tišer and L. Zajíček, A criterion of Γ-nullness and differentiability of convex and quasiconvex functions, Studia Math., 227 (2015), 149–164.

    Article  MathSciNet  MATH  Google Scholar 

  92. A. N. Tolmachev, A property of distributions of diffusion processes, Matem. Zametki, 54 (1993), 106–113 (in Russian); English translation in Math. Notes, 54 (1993), 946–950.

    MathSciNet  MATH  Google Scholar 

  93. M. Tsujii, A measure on the space of smooth mappings and dynamical system theory, J. Math Soc. Japan, 44 (1992), 415–425.

    Article  MathSciNet  MATH  Google Scholar 

  94. D. Yost, If every donut is a teacup, then every Banach space is a Hilbert space, in: Seminar on Functional Anal., Univ. de Murcia (1987), vol. 1, pp. 127–148.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. I. Bogachev.

Additional information

Dedicated to the memory of Jean-Pierre Kahane

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bogachev, V.I. Negligible Sets in Infinite-Dimensional Spaces. Anal Math 44, 299–323 (2018). https://doi.org/10.1007/s10476-018-0503-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10476-018-0503-7

Key words and phrases

Mathematics Subject Classification

Navigation