Skip to main content

New Series Representations for Apéry’s and Other Classical Constants

Abstract

We present a unified approach to obtain new series representations for various classical constants. Among others, we prove that

$$\log (2) = \frac{{17}}{{24}} + \sum\limits_{k = 2}^\infty {{{( - 1)}^k}} \frac{{{k^2} + k - 1/2}}{{(k - 1)k(k + 1)(k + 2)}}({H_k} - {H_{{{\left[ {k/2} \right]}}})^2}$$
$$G = - \frac{1}{2} + 2\sum\limits_{k = 1}^\infty {{{( - 1)}^k}\frac{{k(4{k^2} - 5)}}{{(4{k^2} - 1)(4{k^2} - 9)}}{{(2{H_{2k}} - {H_k})}^2}} $$

,

$$\zeta (3) = \frac{{149}}{{144}} + \frac{1}{8}\sum\limits_{k = 2}^\infty {\frac{{(2k + 1)({k^4} + 2{k^3} + 3{k^2} + 2k - 2)}}{{{{(k - 1)}^2}{k^2}{{(k + 1)}^2}(k + 2)}}{{(2H_k^{(2)} - H_{[k/2]}^{(2)})}^2}} $$

, where \({H_k} = \sum\nolimits_{j = 1}^k {1/j} \) and \(H_k^{(2)} = {\sum\nolimits_{j = 1}^k {1/j} ^2}\) denote the harmonic numbers and the generalized harmonic numbers of order 2, respectively, and G is the Catalan constant.

This is a preview of subscription content, access via your institution.

References

  1. V. S. Adamchik, A certain series associated with Catalan’s constant, Z. Anal. Anwend., 21 (2003), 1–10.

    MathSciNet  Google Scholar 

  2. J.-P. Allouche and J. Sondow, Infinite products with strongly B-multiplicative exponents, Ann. Univ. Sci. Budapest. Sec. Comput., 28 (2008), 35–53.

    MathSciNet  MATH  Google Scholar 

  3. H. Alzer and J. Choi, The Riemann zeta function and classes of infinite series, Appl. Anal. Discr. Math., 11 (2017), 386–398.

    Article  MathSciNet  Google Scholar 

  4. H. Alzer, D. Karayannakis and H. M. Srivastava, Series representations for some mathematical constants, J. Math. Anal. Appl., 320 (2006), 145–162.

    Google Scholar 

  5. H. Alzer and S. Koumandos, Series representations for γ and other mathematical constants, Anal. Math., 34 (2008), 1–8.

    Article  MathSciNet  MATH  Google Scholar 

  6. H. Alzer and S. Koumandos, Series and product representations for some mathematical constants, Period. Math. Hungar., 58 (2009), 71–82.

    Article  MathSciNet  MATH  Google Scholar 

  7. H. Alzer and K. C. Richards, Series representations for special functions and mathematical constants, Ramanujan J., 40 (2016), 291–310.

    Article  MathSciNet  MATH  Google Scholar 

  8. H. Alzer and J. Sondow, A parameterized series representation for Apéry’s constant ζ(3), J. Comp. Anal. Appl., 20 (2016), 1380–1386.

    MATH  Google Scholar 

  9. J. M. Campbell and A. Sofo, An integral transform related to series involving alternating harmonic numbers, Int. Transf. Spec. Funct., 28 (2017), 547–559.

    Article  MathSciNet  MATH  Google Scholar 

  10. S. R. Finch, Mathematical Constants, Cambridge University Press (2003).

    Book  MATH  Google Scholar 

  11. J. Guillera and J. Sondow, Double integrals and infinite products for some classical constants via analytic continuations of Lerch’s transcendent, Ramanujan J., 16 (2008), 247–270.

    Article  MathSciNet  MATH  Google Scholar 

  12. W. Janous, Around Apéry’s constant, J. Inequal. Pure Appl. Math., 7 (2006), Article 35, 8 pp.

    Google Scholar 

  13. A. Sofo, Harmonic numbers at half-integer values, Int. Transf. Spec. Funct., 27 (2016), 430–442.

    Article  MathSciNet  MATH  Google Scholar 

  14. J. Sondow, Double-integrals for Euler’s constant and ln 4/π and an analog of Hadjicostas’s formula, Amer. Math. Monthly, 112 (2005), 61–65.

    MathSciNet  MATH  Google Scholar 

  15. J. Sondow, A faster product for π and a new integral for ln π/2, Amer. Math. Monthly, 112 (2005), 729–734.

    MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. Alzer.

Additional information

Dedicated to the memory of Jean-Pierre Kahane

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Alzer, H., Sofo, A. New Series Representations for Apéry’s and Other Classical Constants. Anal Math 44, 287–297 (2018). https://doi.org/10.1007/s10476-018-0502-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10476-018-0502-8

Key words and phrases

  • series representation
  • mathematical constant
  • harmonic number

Mathematics Subject Classification

  • 11A67