Abstract
In this paper some Turán type inequalities for classical and generalized Mittag-Leffler functions are considered. The method is based on proving monotonicity for the special ratio of sections for series of such functions. Some applications are considered to Lazarević type and Wilker type inequalities for classical and generalized Mittag-Leffler functions.
Similar content being viewed by others
References
Á. Baricz, Turàn type inequalities for hypergeometric functions, Proc. Amer. Math. Soc., 136 (2008), 3223–3229.
Á. Baricz, Functional inequalities involving Bessel and modified Bessel functions of the first kind, Expo. Math., 26 (2008), 279–293.
R. W. Barnard, M. B. Gordy and K. C. Richards, A note on Turàn type and mean inequalities for the Kummer function, J. Math. Anal. Appl., 349 (2009), 259–263.
M. Biernacki and J. Krzyz, On the monotonicity of certain functionals in the theory of analytic functions, Ann. Univ. M. Curie-Sk-lodowska, 2 (1995), 134–145.
P. S. Bullen, D. S. Mitrinović and P. M. Vasić, Means and their Inequalities, D. Reidel Publ. (Dordrecht, 1988).
K. Diethelm, The Analysis of Fractional Differential Equations: an Applicationoriented Exposition Using Differential Operators of Caputo Type, Lecture notes in math., Springer-Verlag (Heidelberg–New York, 2010).
M. M. Dzherbashyan, Integral Transform Representations of Functions in the Complex Domain, Nauka (Moscow, 1966) (in Russian).
S. D. Eidelman, S. D. Ivasyshen and A. N. Kochubei, Analytic Methods in the Theory of Differential and Pseudo-differential Equations of Parabolic Type, Birkhäuser (Basel, 2004).
R. Gorenflo and F. Mainardi, Fractional calculus: integral and differential equations of fractional order, in: Fractals and Fractional Calculus in Continuum Mechanics, Springer (Vienna, 1997), pp. 223–276.
R. Gorenflo, A. A. Kilbas, F. Mainardi and S. V. Rogosin, Mittag-Leffler Functions, Related Topics and Applications, Springer (New York, 2014).
S. I. Kalmykov and D. B. Karp, Log-concavity for series in reciprocal gamma functions, Integral Transforms Spec. Funct., 24 (2013), 859–872.
S. I. Kalmykov and D. B. Karp, Log-convexity and log-concavity for series in gamma ratios and applications, J. Math. Anal. Appl., 406 (2013), 400–418.
D. B. Karp and S. M. Sitnik, Log-convexity and log-concavity of hypergeometric-like functions, J. Math. Anal. Appl., 364 (2010), 384–394.
D. B. Karp and S. M. Sitnik, Inequalities and monotonicity of ratios for generalized hypergeometric function, J. Approx. Theory, 161 (2009), 337–352.
A. A. Kilbas, H. M. Srivastava and J. J. Trujillo, Theory and Applications of Fractional Differential Equations, Elsevier (Amsterdam, 2006).
A. A. Kilbas, H-transforms, Theory and Applications, Chapman & Hall/CRC (Boca Raton, FL, 2004).
V. Kiryakova, The multi-indexMittag-Leffler functions as an important class of special functions of fractional calculus, Comput. Math. Appl., 59 (2010), 1885–1895.
V. Kiryakova, Multiple (multiindex) Mittag-Leffler functions and relations to generalized fractional calculus, J. Comput. Appl. Math., 118 (2000), 241–259.
A. N. Kochubei, A Cauchy problem for evolution equations of fractional order, Diff. Equ., 25 (1989), 967–974.
A. N. Kochubei, Fractional-order diffusion, Diff. Equ., 26 (1990), 485–492.
I. Lazarević, Certain inequalities with hyperbolic functions, Univ. Beograd. Publ. Elektrotehn. Fak. Ser. Mat. Fiz., 159–170 (1966), 41–48 (in Serbo-Croatian).
R. J. McEliece, B. Reznick and J. B. Shearer, A Turàn inequality arising in information theory, SIAM J. Math. Anal., 12 (1981), 931–934.
A. M. Mathai and R. Saxena, The H-function with Applications in Statistics and Other Disciplines, Halsted Press (John Wiley & Sons) (New York–London–Sidney, 1978).
A. M. Mathai, R. Saxena, R. Kishore and H. J. Haubold, The H-function, Springer–Verlag (Berlin–New York, 2010).
K. Mehrez, M. Ben Said and J. El Kamel, Turàn type inequalities for Dunkl and q-Dunkl kernel, arXiv: 1503.04285.
K. Mehrez and S. M. Sitnik, Proofs of some conjectures on monotonicity of ratios of Kummer, Gauss and generalized hypergeometric functions, arXiv: 1410.6120v2 [math.CA] (2014).
K. Mehrez and S. M. Sitnik, Inequalities for sections of exponential function series and proofs of some conjectures on monotonicity of ratios of Kummer, Gauss and generalized hypergeometric functions, RGMIA Res. Rep. Collect., 17 (2014), Article ID 132.
K. Mehrez and S. M. Sitnik, Proofs of some conjectures on monotonicity of ratios of Kummer and Gauss hypergeometric functions and related Turàn-type inequalities, Analysis (2016) (accepted for publication).
K. Mehrez and S. M. Sitnik, On monotonicity of ratios of some hypergeometric functions, Sib. Electron. Mat. Izv., 13 (2016), 260–268 (in Russian).
K. Mehrez and S. M. Sitnik, On monotonicity of ratios of q-Kummer confluent hypergeometric and q-hypergeometric functions and associated Turàn types inequalities, RGMIA Res. Rep. Collect., 17 (2014), Article ID 150.
K. Mehrez and S. M. Sitnik, On monotonicity of ratios of some q-hypergeometric functions, Mat. Vesnik, 68 (2016), 225–231.
D. S. Mitrinović, J. E. Pečarić and A. M. Fink, Classical and New Inequalities in Analysis, Kluwer (Dordrecht, 1993).
I. Podlubny, Fractional Differential Equations. An Introduction to Fractional Derivatives, Fractional Differential Equations, Some Methods of their Solution and Some of their Applications, Mathematics in Science and Engineering, vol. 198, Academic Press (San Diego, CA, 1998).
S. Ponnusamy and M. Vuorinen, Asymptotic expansions and inequalities for hypergeometric functions, Mathematika, 44 (1997), 278–301.
T. Prabhakar, A singular integral equation with a generalized Mittag-Leffler function in the kernel, Yokohama Math. J., 19 (1971), 7–15.
S. G. Samko, A. A. Kilbas and O. I. Marichev, Fractional Integrals and Derivatives, Gordon and Breach (Yverdon, 1993).
S. M. Sitnik, Inequalities for the exponential remainder (preprint), Institute of Automation and Control Process, Far Eastern Branch of the Russian Academy of Sciences, Vladivostok, 1993 (in Russian).
S. M. Sitnik, A conjecture on monotonicity of a ratio of Kummer hypergeometric functions, arXiv: 1207.0936 (2012, 2014).
S. M. Sitnik, Conjectures on monotonicity of ratios of Kummer and Gauss hypergeometric functions, RGMIA Res. Rep. Collect., 17 (2014), Article Id. 107.
S. M. Sitnik, Generalized Young and Cauchy–Bunyakowsky inequalities with applications: a survey, arXiv: 1012.3864 (2012).
H. M. Srivastava and H. A. Manocha, A treatise on generating functions, Bull. Amer. Math. Soc., 19 (1988), 346–348.
H. M. Srivastava, K. C. Gupta and S. P. Goyal, The H-functions of One and Two Variables, South Asian Publishers Pvt. Ltd. (New Delhi, 1988).
A. K. Shukla and J. C. Prajapati, On a generalization of Mittag-Lefer function and its properties, J. Math. Anal. Appl., 336 (2007), 797–811.
P. Turán, On the zeros of the polynomials of Legendre, Casopis Pest. Mat. Fys., 75 (1950), 113–122.
Y. Sun and Á. Baricz, Inequalities for the generalized Marcum Q-function, Appl. Math. Comput., 203 (2008), 134–141.
G. Szegő, Orthogonal Polynomials, AMS (Providence, RI, 1939).
F. W. J. Olver, D. W. Lozier, R. F. Boisvert and C. W. Clark, NIST Handbook of Mathematical Functions, Cambridge University Press (Cambridge, 2010).
J. B. Wilker, Problem E 3306, Amer. Math. Monthly, 96 (1989), 55.
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Mehrez, K., Sitnik, S.M. Turán Type Inequalities for Classical and Generalized Mittag-Leffler Functions. Anal Math 44, 521–541 (2018). https://doi.org/10.1007/s10476-018-0404-9
Received:
Revised:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10476-018-0404-9