Skip to main content
Log in

Maximal Operators: Scales, Curvature and the Fractal Dimension

  • Published:
Analysis Mathematica Aims and scope Submit manuscript

Abstract

The spherical maximal operator

$$Af(x) = \mathop {sup}\limits_{t > 0} \left| {{A_t}f(x)} \right| = \mathop {sup}\limits_{t > 0} \left| \int{f(x - ty)d\sigma (y)} \right|$$

where σ is the surface measure on the unit sphere, is a classical object that appears in a variety of contexts in harmonic analysis, geometric measure theory, partial differential equation and geometric combinatorics.

We establish Lp bounds for the Stein spherical maximal operator in the setting of compactly supported Borel measures μ, ν satisfying natural local size assumptions \(\mu (B(x,r)) \leqslant C{r {{s_\mu }}},v(B(x,r)) \leqslant C{r {{s_v}}}\).

Taking the supremum over all t > 0 is not in general possible for reasons that are fundamental to the fractal setting, but we can obtain single scale (t ∈ [a, b] ⊂ (0,∞)) results. The range of possible Lp exponents is, in general, a bounded open interval where the upper endpoint is closely tied with the local smoothing estimates for Fourier Integral Operators.

In the process, we establish L2(μ) → L2(ν) bounds for the convolution operator Tλf(x) = λ * (), where λ is a tempered distribution satisfying a suitable Fourier decay condition. More generally, we establish a transference mechanism which yields Lp(μ) → Lp(ν) bounds for a large class of operators satisfying suitable Lp-Sobolev bounds. This allows us to effectively study the dimension of a blowup set ({x: Tf(x) = ∞}) for a wide class of operators, including the solution operator for the classical wave equation. Some of the results established in this paper have already been used to study a variety of Falconer type problems in geometric measure theory.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D. Adams, Capacity and blow-up for the 3+1 dimensional wave operator, Forum Math., 20 (2008), 341–357.

    Article  MathSciNet  MATH  Google Scholar 

  2. J. Bourgain, Averages in the plane over convex curves and maximal operators, J. Anal. Math., 47 (1986), 69–85.

    Article  MathSciNet  MATH  Google Scholar 

  3. M. Bennett, A. Iosevich and K. Taylor, Finite chains inside subsets of Rd, Anal. PDE, 9 (2016), 597–614.

    Article  MathSciNet  MATH  Google Scholar 

  4. S. Eswarathasan, A. Iosevich and K. Taylor, Fourier integral operators, fractal sets, and the regular value theorem, Adv. Math., 228 (2011), 2385–2402.

    Article  MathSciNet  MATH  Google Scholar 

  5. K. J. Falconer, The Geometry of Fractal Sets, Cambridge Tracts in Mathematics, 85, Cambridge University Press (Cambridge, 1986).

    Google Scholar 

  6. A. Iosevich, H. Jorati and I. Laba, Geometric incidence theorems via Fourier analysis, Trans. Amer. Math. Soc., 361 (2009), 6595–6611.

    Article  MathSciNet  MATH  Google Scholar 

  7. A. Iosevich and E. Liflyand, Decay of the Fourier Transform, Birkhauser (2014).

    Book  MATH  Google Scholar 

  8. P. Mattila, Geometry of Sets and Measures in Euclidean Spaces, Cambridge Studies in Advanced Mathematics, 44, Cambridge University Press (Cambridge, 1995).

    Book  Google Scholar 

  9. G. Mockenhaupt, A. Seeger and C. D. Sogge, Wave front sets, local smoothing and Bourgain’s circular maximal theorem, Ann. of Math. (2), 136 (1992), 207–218.

    Article  MathSciNet  MATH  Google Scholar 

  10. G. Mockenhaupt, A. Seeger and C. D. Sogge, Local smoothing of Fourier integral operators and Carleson–Sjölin estimates, J. Amer. Math. Soc., 6 (1993), 65–130.

    MathSciNet  MATH  Google Scholar 

  11. I. Schur, Bemerkungen zur Theorie der Beschränkten Bilinearformen mit unendlich vielen Veränderlichen, J. Reine Angew. Math., 140 (1911), 1–28.

    MathSciNet  MATH  Google Scholar 

  12. C. Sogge, Fourier Integrals in Classical Analysis, Cambridge University Press (1993).

    Book  MATH  Google Scholar 

  13. E. M. Stein, Maximal functions: spherical means, Proc. Nat. Acad. Sci. U.S.A., 73 (1976), 2174–2175.

    Article  MathSciNet  MATH  Google Scholar 

  14. E. M. Stein, Harmonic Analysis, Princeton University Press (Princeton, NJ, 1993).

    Google Scholar 

  15. A. Seeger, C. D. Sogge, D. Christopher and E. M. Stein, Regularity properties of Fourier integral operators, Ann. of Math. (2), 134 (1991), 231–251.

    Article  MathSciNet  MATH  Google Scholar 

  16. R. Strichartz, Fourier asymptotics of fractal measures, J Func. Anal., 89 (1990), 154–187.

    Article  MathSciNet  MATH  Google Scholar 

  17. K. Taylor, Ph.D. Thesis, University of Rochester (2012).

    Google Scholar 

  18. T. Wolff, Lectures on Harmonic Analysis, edited by I. Laba and C. Shubin, University Lecture Series, 29, American Mathematical Society (Providence, RI, 2003).

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Iosevich.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Iosevich, A., Krause, B., Sawyer, E. et al. Maximal Operators: Scales, Curvature and the Fractal Dimension. Anal Math 45, 63–86 (2019). https://doi.org/10.1007/s10476-018-0307-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10476-018-0307-9

Key words and phrases

Mathematics Subject Classification

Navigation